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We developed a method to predict heavy rainfall in South Korea with a lead time of one to six hours. We modified the AWS
data for the recent four years to perform efficient prediction, through normalizing them to numeric values between 0 and 1
and undersampling them by adjusting the sampling sizes of no-heavy-rain to be equal to the size of heavy-rain. Evolutionary
algorithms were used to select important features. Discriminant functions, such as support vector machine (SVM), k-nearest
neighbors algorithm (k-NN), and variant k-NN (k-VNN), were adopted in discriminant analysis. We divided our modified AWS
data into three parts: the training set, ranging from 2007 to 2008, the validation set, 2009, and the test set, 2010. The validation set
was used to select an important subset from input features. The main features selected were precipitation sensing and accumulated
precipitation for 24 hours. In comparative SVM tests using evolutionary algorithms, the results showed that genetic algorithm was
considerably superior to differential evolution.The equitable treatment score of SVMwith polynomial kernel was the highest among
our experiments on average. k-VNN outperformed k-NN, but it was dominated by SVM with polynomial kernel.

1. Introduction

South Korea lies in the temperate zone. In South Korea, we
have clearly distinguished four seasons, where spring and fall
are short relatively to summer and winter. It is geographically
located between the parallels 125∘04󸀠󸀠E and 131∘52󸀠󸀠E and the
meridians 33∘06󸀠󸀠N and 38∘ 27󸀠󸀠N in the Northern Hemi-
sphere, on the east coast of the Eurasian Continent, and also
adjacent to the Western Pacific, as shown in Figure 1. There-
fore, it has complex climate characteristics which show both
continental and oceanic features. It has a wide interseasonal
temperature difference and much more precipitation than
that of the Continent. In addition, it has obvious monsoon
season wind, a rainy period from the East Asian Monsoon,
locally called Changma [1], typhoons, and frequently heavy
snowfalls in winter. The area belongs to a wet region because
of more precipitation than that of the world average.

The annual mean precipitation of South Korea, as shown
in Figure 2, is around 1,500mm and 1,300mm in the central

part. Geoje-si of Gyeongsangnam-do has the largest amount
of precipitation, 2007.3mm, and Baegryeong island of
Incheon has the lowest amount of precipitation, 825.6mm.

When a stationary front lingers across the Korean Penin-
sula for about a month in summer, more than half of the
annual precipitation falls during the Changma season. Pre-
cipitation for the winter is less than 10% of the total. Changma
is a part of the summer Asian monsoon system. It brings fre-
quent heavy rainfall and flash floods for 30 days on average,
and serious natural disasters often occur.

The heavy rainfall is one of the major severe weather phe-
nomena in South Korea.The weather phenomena can lead to
serious damage and losses of both life and infrastructure, and
it is very important to forecast heavy rainfall. However, it is
considered a difficult task because it takes place in very short
time interval [2].

We need to predict this torrential downpour to prevent
the losses of life and property [1, 3]. Heavy rainfall forecasting
is very important to avoid or minimize natural disasters
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Figure 1: The location of South Korea in East Asia and the dispersion of automatic weather stations in South Korea.
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Figure 2: Annual (a) and summer (b) mean precipitation in South Korea (mm) [4].

before the events occur. We used real weather data collected
from 408 automatic weather stations [4] in South Korea, for
the period from 2007 to 2010. We studied the prediction of
one hour to six hours of whether or not heavy rainfall will
occur in South Korea. To the best knowledge of the authors,
this problem has not been handled by other researchers.

There have been many studies on heavy rainfall using
various machine learning techniques. In particular, several
studies focused on weather forecasting using an artificial

neural network (ANN) [5–11]. In the studies of Ingsrisawang
et al. [11] and Hong [12], support vector machine was applied
to develop classification and prediction models for rainfall
forecasts. Our research is different from previous work on
how to process weather datasets.

Kishtawal et al. [13] studied the prediction of summer
rainfall over India using genetic algorithm (GA). In their
study, the genetic algorithm found the equations that best
describe the temporal variations of the seasonal rainfall over
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India. The geographical region of India has been divided
into five homogeneous zones (excluding the North-West
Himalayan zone). They used the monthly mean rainfall dur-
ing the months of June, July, and August. The dataset consist
of the training set, ranging from 1871 to 1992, and the vali-
dation set, ranging from 1993 to 2003. The experiment of the
first evolution process and the second evolution process were
conducted using the training set and the validation set, in
order. The performance of the algorithm for each case was
evaluated, using the statistical criteria of standard error and
fitness strength. Chromosome was made up of five homo-
geneous zones, annual precipitation, and four elementary
arithmetic operators. The strongest individuals (equations
with best fitness) were then selected to exchange parts of
the character strings between reproduction and crossover,
while individuals less fitted to the data are discarded. A small
percentage of the equation strings’most basic elements, single
operators and variables, are mutated at random. The process
was repeated a large number of times (about 1,000–10,000) to
improve the fitness of the evolving population of equations.
The major advantage of using genetic algorithm versus other
nonlinear forecasting techniques, such as neural networks,
is that an explicit analytical expression for the dynamic
evolution of the rainfall time series is obtained. However,
they used quite simple or typical parameters of a genetic
algorithm. If they conducted experiments by tuning various
parameters of their genetic algorithm, they would report the
experimental results showing better performance.

Liu et al. [14] proposed a filter method for feature selec-
tion. Genetic algorithm was used to select major features in
their study, and the features were used for data mining based
on machine learning. They proposed an improved Naive
Bayes classifier (INBC) technique and explored the use of
genetic algorithms (GAs) for selection of a subset of input fea-
tures in classification problems.They then carried out a com-
parison with several other techniques.This sets a comparison
of the following algorithms, namely, (i) genetic algorithm
with average classification or general classification (GA-AC,
GA-C), (ii) C4.5 with pruning, and (iii) INBC with relative
frequency or initial probability density (INBC-RF, INBC-
IPD), on the real meteorological data in Hong Kong. In
their experiments, the daily observations of meteorological
data were collected from the Observatory Headquarters and
King’s Park for training and test purposes, for the period
from 1984 to 1992 (Hong Kong Observatory). During this
period, they were only interested in extracting data fromMay
to October (for the rainy season) each year. INBC achieved
about a 90% accuracy rate on the rain/no-rain (Rain) clas-
sification problems. This method also attained reasonable
performance on rainfall prediction with three-level depth
(Depth 3) and five-level depth (Depth 5), which was around
65%–70%. They used a filter method for feature selection. In
general, it is known that a wrapper method performs better
than a filter method. In this study, we try to apply a wrapper
method to feature selection.

Nandargi and Mulye [15] analyzed the period of 1961–
2005 to understand the relationship between the rain and
rainy days, mean daily intensity, and seasonal rainfall over the
Koyna catchment in India, on monthly, as well as seasonal,

scale. They compared a linear relationship with a logarithmic
relationship, in the case of seasonal rainfall versus mean daily
intensity.

Routray et al. [16] studied a performance-based compar-
ison of simulations carried out using nudging (NUD) tech-
nique and three-dimensional variation (3DVAR) data assim-
ilation system, of a heavy rainfall event that occurred during
25–28 June, 2005, along the west coast of India. In the exper-
iment, after observations using the 3DVAR data assimilation
technique, the model was able to simulate better structure
of the convective organization, as well as prominent synop-
tic features associated with the mid-tropospheric cyclones
(MTC), than the NUD experiment, and well correlated with
the observations.

Kouadio et al. [17] investigated relationships between
simultaneous occurrences of distinctive atmospheric easterly
wave (EW) signatures that cross the south equatorial Atlantic,
intense mesoscale convective systems (lifespan > 2 hours)
that propagate westward over the western south equatorial
Atlantic, and subsequent strong rainfall episodes (anomaly >
10mm⋅day−1) that occur in eastern Northeast Brazil (ENEB).
They forecasted rainfall events through real-time monitoring
and the simulation of this ocean-atmosphere relationship.

Afandi et al. [2] investigated heavy rainfall events that
occurred over Sinai Peninsula and caused flash flood, using
the Weather Research and Forecasting (WRF) model. The
test results showed that the WRF model was able to capture
the heavy rainfall events over different regions of Sinai and
predict rainfall in significant consistency with real measure-
ments.

Wang and Huang [18] studied on finding the evidence of
self-organized criticality (SOC) for rain datasets in China, by
employing the theory and method of SOC. For that reason,
they analyzed the long-term rain records of five meteorologi-
cal stations inHenan, a central province of China.They found
that the long-term rain processes in central China exhibit the
feature of self-organized criticality.

Hou et al. [19] studied the impact of three-dimensional
variation data assimilation (3DVAR) on the prediction of two
heavy rainfall events over southern China in June and July.
They used two heavy rainfall events: one affecting several
provinces in southern China with heavy rain and severe
flooding; the other is characterized by nonuniformity and
extremely high rainfall rates in localized areas. Their results
suggested that the assimilation of all radar, surface, and
radiosonde data had a more positive impact on the forecast
skill than the assimilation of either type of data only, for the
two rainfall events.

As a similar approach to ours, Lee et al. [20] studied
feature selection using a genetic algorithm for heavy-rain
prediction in South Korea. They used ECMWF (European
Centre for Medium-Range Weather Forecasts) weather data
collected from 1989 to 2009.They selected five features among
254 weather elements to examine the performance of their
model. The five features selected were height, humidity tem-
perature, U-wind, and V-wind. In their study, a heavy-rain
criterion is issued only when precipitation during six hours
is higher than 70mm. They used a wrapper-based feature
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Table 1: Modified weather elements [4, 21].

Index Contents (original) Contents (modified)
— Station number —
— Day —
— Latitude —
— Longitude —
— Height —
1 — Month (1–12)
2 Mean wind direction for 10 minutes (0.1 deg) Mean wind direction for 10 minutes (0.1 deg)
3 Mean wind velocity for 10 minutes (0.1m/s) Mean wind velocity for 10 minutes (0.1m/s)
4 Mean temperature for 1 minute (0.1 C) Mean temperature for 1 minute (0.1 C)
5 Mean humidity for 1 minute (0.1%) Mean humidity for 1 minute (0.1%)
6 Mean atmospheric pressure for 1 minute (0.1 hPa) Mean atmospheric pressure for 1 minute (0.1 hPa)
— Mean sea level pressure for 1 minute (0.1 hPa) —
7 Accumulated precipitation for 1 hour (0.1mm) Accumulated precipitation for 1 hour (0.1mm)
8 Precipitation sensing (0 or 1) Precipitation sensing (0 or 1)
9 — Accumulated precipitation for 3 hours (0.1mm)
10 — Accumulated precipitation for 6 hours (0.1mm)
11 — Accumulated precipitation for 9 hours (0.1mm)
12 Accumulated precipitation for 24 hours (0.1mm) Accumulated precipitation for 24 hours (0.1mm)

selection method using a simple genetic algorithm and SVM
with RBF kernel as the fitness function. They did not explain
errors and incorrectness for their weather data. In this paper,
we use theweather data collected from408 automaticweather
stations during the recent four years from 2007 to 2010. Our
heavy-rain criterion is exactly that of Korea Meteorological
Administration in South Korea, as shown in Section 3.
We validate our algorithms with various machine learning
techniques, including SVM with different kernels. We also
explain and fixed errors and incorrectness for our weather
data in Section 2.

The remainder of this paper is organized as follows. In
Section 2, we propose data processing and methodology for
very short-term heavy rainfall prediction. Section 3 describes
the environments of our experiments and analyzes the results.
The paper ends with conclusions in Section 4.

2. Data and Methodology

2.1. Dataset. The weather data, which are collected from 408
automatic weather stations during the recent four years from
2007 to 2010, had a considerable number of missing data,
erroneous data, and unrelated features. We analyzed the data
and corrected the errors. We preprocessed the original data
given by KMA, in accordance with Table 1. Some weather
elements of the original data had incorrect value, and we
replaced the value with a very small one (−107). We created
several elements, such as month (1–12) and accumulated
precipitation for 3, 6, and 9 hours (0.1mm), from the original
data [21]. We removed or interpolated each day data of the
original data, when important weather elements of the day
data had very small value. Also, we removed or interpolated
new elements, such as accumulated precipitation for 3, 6, and

f1 f2 · · ·· · · f12 ×6hours f󳰀
1 f󳰀

2 f󳰀
71 f󳰀

72

Figure 3: Representation with 72 features (accumulated weather
factors for six hours).

9 hours, which had incorrect value. We undersampled the
weather data that were adjusted for the proportion of heavy-
rain against no-heavy-rain to be one in the training set, as
shown in Section 2.3.

The new data were generated in two forms: whether
or not we applied normalization. The training set, ranging
from 2007 to 2008, was generated by undersampling. The
validation set, the data for 2009, was used to select an
important subset from input features.The selected important
features were used for experiments with the test set, the data
for 2010. Representation of our GA and DE was composed of
72 features accumulated for the recent six hours, as shown in
Figure 3.The symbols𝑓

1−12
shown in Figure 3meanmodified

weather elements in order by index number shown in Table 1.
The symbol “—” in Table 1 means (NA not applicable).

2.2. Normalization. The range of each weather element was
significantly different (see Table 2), and the test results might
rely on the values of a few weather elements. For that reason,
we preprocessed the weather data using a normalization
method. We calculated the upper bound and lower bound of
each weather factor from the original training set. The value
of each upper bound and lower bound was converted to 1 and
0, respectively. Equation (1) shows the process for the used
normalization. In (1), 𝑑 means each weather element. The
validation set and the test set were normalized, in accordance
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Table 2: The upper and lower bound ranges of weather data.

Weather elements Upper bound Lower bound
Latitude 38.53 32.50
Longitude 131.88 32.50
Height 1673 1.5
Mean wind direction for 10 minutes
(0.1 deg) 3600 0

Mean wind velocity for 10 minutes
(0.1m/s) 424 0

Mean temperature for 1 minute
(0.1∘C) 499 −399

Mean humidity for 1 minute (0.1%) 1000 0
Mean atmospheric pressure for 1
minute (0.1 hPa) 10908 0

Mean sea level pressure for 1 minute
(0.1 hPa) 11164 0

Precipitation sensing (0/1) 1 0
Accumulated precipitation for 1
hour (0.1mm) 1085 0

Accumulated precipitation for 24
hours (0.1mm) 8040 0

Table 3: Heavy rainfall rate.

Year Heavy-rain (hours) No-heavy-rain (hours) Ratio (%)
2007 10.18 8749.82 0.0012
2008 9.71 8774.29 0.0011
2009 19.32 8716.68 0.0022
2010 14.66 8721.35 0.0017

with the ranges in the original training set. Precipitation sens-
ing in Table 2 means whether or not it rains:

𝑑max = max {𝑑} , 𝑑min = min {𝑑} ,

𝑑
𝑖
=

𝑑
𝑖
− 𝑑min

𝑑max − 𝑑min
.

(1)

2.3. Sampling. Let 𝑙 be the frequency of heavy rainfall occur-
rence in the training set. We randomly choose 𝑙 among the
cases of no-heavy-rain in the training set. Table 3 shows the
proportion of heavy-rain to no-heavy-rain every year. On
account of the results of Table 3, we preprocessed our data
using this method called undersampling. We adjusted the
proportion of heavy rainfall against the other to be one, as
shown in Figure 4 and Pseudocode 1.

Table 4 shows ETS for prediction after 3 hours and the
effect of undersampling [22] and normalization for 3 ran-
domly chosen stations. The tests without undersampling
showed a low equitable threat score (ETS) and required too
long a computation time. In tests without undersampling, the
computation time took 3, 721 minutes in k-NN and 3, 940
minutes in k-VNN (see Appendix B), the “reachedmax num-
ber of iterations” error was raised in SVM with polynomial
kernel (see Appendix C), and 𝑎 and 𝑏 of ETS were zero.
In tests with undersampling, the computation time took
around 329 seconds in k-NN, 349 seconds in k-VNN, and
506 seconds in SVM with polynomial kernel. The test results

Heavy-rain
No-heavy-rain

Training set of one stationTraining set of one station

Undersampling

Figure 4: Example of our undersampling process.

with normalization showed about 10 times higher, than those
without normalization.

2.4. Genetic-Algorithm-Based Feature Selection. Pseudocode 2
shows the pseudocode of a typical genetic algorithm [23]. In
this figure, if we define that 𝑛 is the count of solutions in
the population set, we create 𝑛 new solutions in a random
way. The evolution starts from the population of completely
random individuals, and the fitness of the whole population
is determined. Each generation consists of several operations,
such as selection, crossover, mutation, and replacement.
Some individuals in the current population are replaced with
new individuals to form a new population. Finally, this gen-
erational process is repeated, until a termination condition
has been reached. In a typical GA, the whole number of
individuals in a population and the number of reproduced
individuals are fixed at 𝑛 and 𝑘, respectively. The percentage
of individuals to copy to the new generation is defined as the
ratio of the number of new individuals to the size of the parent
population, 𝑘/𝑛, which we called “generation gap” [24]. If the
gap is close to 1/𝑛, the GA is called a steady-state GA.

We selected important features, using the wrapper meth-
ods that used the inductive algorithm to estimate the value
of a given subset. The selected feature subset is the best
individual among results of the experiment with the vali-
dation set. The experimental results in the test set with the
selected features showed better performance than those using
all features.

The steps of the GA used are described in Box 1. All
steps will be iterated, until the stop condition (the number of
generations) is satisfied. Figure 5 shows the flow diagram of
our steady-state GA.

2.5. Differential-Evolution-Based Feature Selection. Khush-
aba et al. [25, 26] proposed a differential-evolution-based
feature selection (DEFS) technique which is shown schemat-
ically in Figure 6.The first step in the algorithm is to generate
new population vectors from the original population. A new
mutant vector is formedby first selecting two randomvectors,
then performing a weighted difference, and adding the result
to a third random (base) vector. The mutant vector is then
crossed with the original vector that occupies that position in
the originalmatrix.The result of this operation is called a trial
vector.The corresponding position in the newpopulationwill
contain either the trial vector (or its corrected version) or
the original target vector depending on which one of those
achieved a higher fitness (classification accuracy). Due to the
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Figure 5: Flow diagram of the proposed steady-state GA.
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Figure 6: The DEFS algorithm [25, 26].

fact that a real number optimizer is being used, nothing will
prevent two dimensions from settling at the same feature
coordinates. In order to overcome such a problem, they
proposed to employ feature distribution factors to replace
duplicated features. A roulette wheel weighting scheme is
utilized. In this scheme, a cost weighting is implemented, in
which the probabilities of individual features are calculated
from the distribution factors associated with each feature.
The distribution factor of feature 𝑓

𝑖
is given by the following

equation:

FD
𝑖
= 𝑎
1
∗ (

PD
𝑖

PD
𝑖
+ND

𝑖

)

+ 𝑎
2
∗ (1 −

𝑃𝐷
𝑖
+ND

𝑖

∈ +max (PD
𝑖
+ND

𝑖
)
) ,

(2)

where 𝑎
1
, 𝑎
2
are constants and ∈ is a small factor to avoid

division by zero. PD
𝑖
is the positive distribution factor that

is computed from the subsets that achieved an accuracy that
is higher than the average accuracy of the whole subsets.
ND
𝑖
is the negative distribution factor that is computed from

the subsets that achieved an accuracy that is lower than
the average accuracy of the whole subsets. This is shown
schematically in Figure 7, with the light gray region being
the region of elements achieving less error than the average
error values and the dark gray being the region with elements
achieving higher error rates than the average. The rationale
behind (2) is to replace the replicated parts of the trial vectors
according to two factors.ThePD

𝑖
/(PD
𝑖
+ND
𝑖
) factor indicates

the degree to which 𝑓
𝑖
contributes to forming good subsets.

On the other hand, the second term in (2) aims at favoring
exploration, where this term will be close to 1, if the overall
usage of a specific feature is very low.
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Table 4: Effect of undersampling (sampled 3 stations, prediction after 3 hours).

w/o undersampling w/undersampling
𝑘-NN (min) 𝑘-VNN (min) SVM (min) 𝑘-NN (sec) 𝑘-VNN (sec) SVM (sec)

w/o normalization 0.000 (3323) 0.000 (3760) N/A (>10000000) 0.003 (301) 0.014 (329) 0.024 (285)
w/normalization 0.000 (3721) 0.000 (3940) N/A (>10000000) 0.032 (329) 0.094 (349) 0.267 (506)

// 𝐴: set of heavy-rain cases in training set
// 𝐵: set of no-heavy-rain cases in training set
// 𝑅: set of no-heavy-rain cases sampled from B, that is, 𝑅 ⊆ 𝐵
// 𝑇: undersampled training set

𝑙 ← the number of heavy-rain cases, that is, |A|;
initialize 𝑅 to be empty;
while (l > 0)

randomly choose one value from B;
if the value is not in 𝑅, then

add the value to 𝑅;
𝑙 ← 𝑙 − 1;

end if
end while
T← the union of A and 𝑅;
Return T;

Pseudocode 1: A pseudocode of our undersampling process.

Create an initial population of size 𝑛;
repeat

for 𝑖 = 1 to 𝑘
choose 𝑝

1

and 𝑝
2

from the population;
offspring

𝑖

= crossover(𝑝
1

, 𝑝
2

);
offspring

𝑖

= mutation(offspring
𝑖

);
end for
replace(population, [offspring

1

, offspring
2

, . . ., offspring
𝑘

]);
until (stopping condition);
return the best solution;

Pseudocode 2: The pseudocode of a genetic algorithm.

3. Experimental Results

We preprocessed the original weather data. Several weather
elements are added or removed, as shown in Table 1. We
undersampled and normalized the modified weather data.
Each hourly record of the data consists of twelve weather
elements, and representation was made up of the latest six
hourly records, 72 features, as shown in Figure 3.We extracted
a feature subset using the validation set and used the feature
subset to do experiments with the test set.

The observation area has 408 automatic weather stations
in the southern part of the Korean peninsula. The prediction
time is from one hour to six hours. We adopted GA and DE
among the evolutionary algorithms. SVM, k-VNN, and k-NN
are used as discriminant functions. Table 5 shows the parame-
ters of a steady-state GA andDE, respectively. LibSVM [27] is

adopted as a library of SVM, and we set SVM type, one of the
SVM parameters, as C SVC that regularizes support vector
classification, and the kernel functions used are polynomial,
linear, and precomputed. We set 𝑘 to be 3 in our experiments.

In South Korea, a heavy-rain advisory is issued when
precipitation during six hours is higher than 70mm or pre-
cipitation during 12 hours is higher than 110mm. A heavy-
rain warning is issued when precipitation during 6 hours is
higher than 110mm, or precipitation during 12 hours is higher
than 180mm. We preprocessed the weather data using this
criterion. To select the main features, we adopted a wrapper
method, which uses classifier itself in feature evaluation
differently from a filter method.

An automatic weather station (AWS) [28] is an auto-
mated version of the traditional weather station, either to
save human labor or to enable measurements from remote
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(1) Population Initialization: generatem random solutions.
(2) Selection: a number Tour of individuals is chosen randomly from the population, and the best individual
from this group is selected as parent.
(3) Crossover: create an offspring by the genetic recombination of Parent1 and Parent2.
(4) Mutation: change each gene of the offspring at the rate of 5 percent.
(5) Replacement: if the offspring is superior to the worst individual of population, replace the worst one with
the offspring.

Box 1: Steps of the used GA.

1 1 0 1 0 1 0
1 0 0 0 0 0 0
1 0 1 1 1 1 1
1 0 1 0 1 1 0
0 0 0 1 1 1 0
0 1 0 0 0 0 1
1 1 1 0 0 1 1
0 0 0 0 0 1 1
0 1 1 0 1 1 0
1 0 1 0 0 1 1

3
2
1
4

10
17
16
9

14
13

4 1 2 2 2 3 1PD =

Positive distribution (PD) 

2 3 3 1 2 5 4ND =

Negative distribution (ND) 

Fit (error) Population

0 0 0 1 1 1 0
0 1 0 0 0 0 1
1 1 1 0 0 1 1
0 0 0 0 0 1 1
0 1 1 0 1 1 0
1 0 1 0 0 1 1

10
17
16
9

14
13

1 1 0 1 0 1 0
1 0 0 0 0 0 0
1 0 1 1 1 1 1
1 0 1 0 1 1 0

3
2
1
4

( ) p

Figure 7: The feature distribution factors [25, 26].

areas. An automatic weather station will typically consist
of a weather-proof enclosure, containing the data logger,
rechargeable battery, telemetry (optional), and the meteoro-
logical sensors, with an attached solar panel or wind turbine
and mounted upon a mast. The specific configuration may
vary, due to the purpose of the system. In Table 6, Fc and Obs
are abbreviations for forecast and observed, respectively. The
following is a measure for evaluating precipitation forecast
skill:

ETS (equitable threat score)

=
(𝑎 − 𝑎

𝑟
)

(𝑎 + 𝑏 + 𝑐 − 𝑎
𝑟
)
, 𝑎
𝑟
=
(𝑎 + 𝑏) (𝑎 + 𝑐)

𝑛
,

FBI (frequency bias index) = (𝑎 + 𝑏) (𝑎 + 𝑐) ,

PC (proportion correct) = (𝑎 + 𝑑)
𝑛

,

POD (probability of detection) = 𝑎

(𝑎 + 𝑐)
,

PAG (post-agreement) = 𝑎

(𝑎 + 𝑏)
.

(3)

These experiments were conducted using LibSVM [27]
on an Intel Core2 duo quad core 3.0GHz PC. Each run of
GA took about 201 seconds in SVM test with normalization
and about 202 seconds without normalization; it took about
126 seconds in k-NN test with normalization and about 171
seconds without normalization; it took about 135 seconds
in k-VNN test with normalization and about 185 seconds
without normalization.

Each run of DE took about 6 seconds in SVM test with
normalization and about 5 seconds without normalization;

Table 5: Parameters in GA/DE.

GA parameters

Fitness function
𝑘-NN (𝑘 = 3), 𝑘-VNN (𝑘 = 3), SVM (type:

C SVC, kernel function: polynomial, linear, and
precomputed) [27]

Encoding Binary (72 dimensions)
No. of populations 20
No. of generations 100
Selection Tournament selection
Crossover Multipoint crossover (3 points)
Mutation Genewise mutation (𝑃 = 0.005)

Replacement
If an offspring is superior to the worst

individual in the population, we replace it with
the worst one

DE parameters

Fitness function 𝑘-NN (𝑘 = 3), 𝑘-VNN (𝑘 = 3), SVM (type:
C SVC, kernel function: polynomial)

Encoding Real number (23 dimensions)
No. of populations 20
No. of generations 100
Crossover rate 0.03
FVal 0.05

Replacement If an offspring is superior to the parent in the
population, we replace it with the parent

it took about 5 seconds in k-NN test with normalization
and about 4 seconds without normalization; it took about
5 seconds in k-VNN test with normalization and about 4
seconds without normalization.

The heavy-rain events, which meet the criterion of heavy
rainfall, consist of a consecutive time interval, which has
a beginning time and an end time. The coming event is to
discern whether or not it is a heavy rain on the beginning
time. For each hour from the beginning time to the end time,
discerning whether or not it is a heavy rain means the whole
process. We defined CE and WP to be forecasting the coming
event and the whole process of heavy rainfall, respectively.

Table 7 shows the experimental results for GA and DE.
Overall, GA was about 1.42 and 1.49 times better than DE
in CE and WP predictions, respectively. In DE experiments,
SVM and k-VNN were about 2.11 and 1.10 times better than
k-NN in CE prediction, respectively. SVM and k-VNN were
about 2.48 and 1.08 times better than k-NN inWP prediction,
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Table 6: Contingency table.

Forecast
Event

Event observed
Yes No Marginal total

Yes Hit (𝑎) False alarm (𝑏) Fc Yes (𝑎 + 𝑏)
No Miss (𝑐) Correct nonevent (𝑑) Fc No (𝑐 + 𝑑)
Marginal total Obs Yes (𝑎 + 𝑐) Obs No (𝑏 + 𝑑) Sum total (𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑛)

Table 7: Experimental results (1–6 hours) by ETS.

Prediction type
Prediction hour

1 2 3 4 5 6
CE WP CE WP CE WP CE WP CE WP CE WP

DE
𝑘-NN 0.096 0.183 0.062 0.127 0.043 0.093 0.026 0.059 0.020 0.049 0.014 0.035
𝑘-VNN 0.098 0.187 0.073 0.147 0.049 0.104 0.030 0.069 0.021 0.048 0.015 0.037
SVM (polynomial) 0.192 0.383 0.139 0.320 0.140 0.329 0.090 0.238 0.027 0.105 0.005 0.019

GA
𝑘-NN 0.070 0.265 0.068 0.212 0.056 0.160 0.035 0.105 0.025 0.078 0.009 0.044
𝑘-VNN 0.179 0.314 0.152 0.279 0.113 0.230 0.084 0.184 0.047 0.117 0.029 0.078
SVM

Polynomial 0.276 0.516 0.239 0.481 0.160 0.373 0.102 0.271 0.040 0.148 0.008 0.046
Linear 0.043 0.095 0.096 0.196 0.127 0.200 0.083 0.150 0.152 0.240 0.102 0.173
Precomputed 0.048 0.102 0.055 0.126 0.040 0.086 0.079 0.157 0.048 0.090 0.040 0.074

CE: forecasting the coming event of heavy rainfall. WP: forecasting the whole process of heavy rainfall.

respectively. In GA experiments, SVM with polynomial
kernel showed better performance than that with linear or
precomputed kernel on average. SVMwith polynomial kernel
and k-VNN were about 2.62 and 2.39 times better than k-
NN in CE prediction, respectively. SVM with polynomial
kernel and k-VNN were about 2.01 and 1.49 times better
than k-NN in WP prediction, respectively. As the prediction
time is longer, ETS shows a steady downward curve. SVM
with polynomial kernel shows the best ETS among GA test
results. Figure 8 visually compares CE and WP results in GA
experiments.

Consequently, SVM showed the highest performance
among our experiments. k-VNN showed that the degree of
genes’ correlation had significantly effects on the test results,
in comparisonwith k-NN. Tables 8, 9, 10, and 11 showdetailed
SVM (with polynomial kernel) test results for GA and DE.

We selected the important features using the wrapper
methods using the inductive algorithm to estimate the value
of a given set. All features consist of accumulated weather
factors for six hours, as shown in Figure 3.The selected feature
subset is the best individual among the experimental results,
using the validation set. Figure 9 shows the frequency for the
selected features after one hour to six hours. The test results
using the selected features were higher than those using all
features. We define a feature as 𝑓. The derived features from
the statistical analysis, which has a 95 percent confidence
interval, were the numbers 𝑓
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56
and were evenly used by each

prediction hour.These features were precipitation sensing and
accumulated precipitation for 24 hours.

We compared the heavy rainfall prediction test results
of GA and DE, as shown in Table 7. The results showed
that GA was significantly better than DE. Figure 10 shows
precipitation maps for GA SVM test results with normaliza-
tion and undersampling, from one to six hours. The higher
ETS is depicted in the map in the darker blue color. The
numbers of automatic weather stations by prediction hours
are 105, 205, 231, 245, 223, and 182, in order from one to six
hours, respectively. The reasons for the differential numbers
of automatic weather stations by prediction hours are as
follows. First, we undersampled the weather data by adjusting
the sampling sizes of no-heavy-rain to be equal to the size
of heavy-rain in the training set, as shown in Section 2.3.
Second, we excluded the AWS number in which the record
number of the training set is lower than three. Third, we
excluded the AWS in which hit and false alarm are 0 from
the validation experimental results. Finally, we excluded the
AWS in which hit, false alarm, and miss are 0 from the test
experimental results.

The weather data collected from automatic weather sta-
tions during the recent four years had a lot of missing data
and erroneous data. Furthermore, our test required more
than three valid records in the training set. For that reason,
the number of usable automatic weather stations was the
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Figure 8: Experimental results for GA from 1 to 6 hours.
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Figure 9: Frequency for selected features after from 1 to 6 hours.
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Table 8: Results of DE with SVM from 1 to 6 hours (CE).

Hour ETS FBI PC POD PAG Hit False alarm Miss Correct nonevent No. of AWSs
1 0.192 4.116 0.994 0.627 0.340 11.619 41.305 7.067 8160.305 105
2 0.139 5.108 0.994 0.531 0.332 8.737 45.332 7.902 8139.571 205
3 0.140 5.615 0.994 0.512 0.301 8.238 41.710 8.338 8102.411 231
4 0.090 9.517 0.990 0.486 0.264 7.878 69.261 9.008 8048.094 245
5 0.027 30.133 0.977 0.419 0.116 5.707 183.378 8.053 7942.960 223
6 0.005 79.798 0.901 0.589 0.041 5.484 817.126 3.874 7315.505 182

Table 9: Results of DE with SVM from 1 to 6 hours (WP).

Hour ETS FBI PC POD PAG Hit False alarm Miss Correct nonevent No. of AWSs
1 0.383 2.558 0.994 0.813 0.535 30.295 41.305 7.067 8160.305 105
2 0.320 3.055 0.994 0.766 0.538 25.356 45.332 7.902 8139.571 205
3 0.329 3.308 0.994 0.756 0.512 24.814 41.710 8.338 8102.411 231
4 0.238 5.252 0.990 0.744 0.475 24.820 69.261 9.008 8048.094 245
5 0.105 13.148 0.977 0.741 0.312 23.156 183.378 8.053 7942.960 223
6 0.019 31.885 0.901 0.846 0.144 23.341 817.126 3.874 7315.505 182

Table 10: Results of GA with SVM from 1 to 6 hours (CE).

Hour ETS FBI PC POD PAG Hit False alarm Miss Correct nonevent No. of AWSs
1 0.276 2.168 0.997 0.589 0.403 10.581 19.524 8.105 8182.086 105
2 0.239 2.398 0.997 0.529 0.383 8.771 19.824 7.868 8165.078 205
3 0.160 3.613 0.995 0.463 0.316 8.000 32.918 8.576 8111.203 231
4 0.102 6.421 0.992 0.417 0.291 7.747 57.514 9.139 8059.841 245
5 0.040 20.543 0.984 0.397 0.117 5.695 122.857 8.126 8007.287 223
6 0.008 66.609 0.944 0.420 0.025 4.192 437.291 5.984 7546.929 182

Table 11: Results of GA with SVM from 1 to 6 hours (WP).

Hour ETS FBI PC POD PAG Hit False alarm Miss Correct nonevent No. of AWSs
1 0.516 1.577 0.997 0.797 0.622 29.686 19.524 8.105 8182.086 105
2 0.481 1.671 0.997 0.766 0.610 25.805 19.824 7.868 8165.078 205
3 0.373 2.274 0.995 0.735 0.561 24.970 32.918 8.576 8111.203 231
4 0.271 3.685 0.992 0.713 0.540 25.069 57.514 9.139 8059.841 245
5 0.148 10.285 0.984 0.733 0.341 23.363 122.857 8.126 8007.287 223
6 0.046 27.701 0.944 0.786 0.165 23.154 437.291 5.984 7546.929 182

lowest in the prediction after one hour and increased as the
prediction time became longer.

4. Conclusion

In this paper, we realized the difficulty, necessity, and signifi-
cance of very short-term heavy rainfall forecasting. We used
various machine learning techniques, such as SVM, k-NN,
and k-VNN based on GA and DE, to forecast heavy rainfall
after from one hour to six hours. The results of GA were
significantly better than those of DE. SVM with polynomial
kernel among various classifiers in our GA experiments
showed the best results on average. A validation set was used

to select the important features, and the selected features
were used to predict very short-term heavy rainfall. We
derived 20 features from the statistical analysis, which has
a 95 percent confidence interval. The main features selected
were precipitation sensing and accumulated precipitation for
24 hours.

In future work, we will preprocess the weather data
by various methods, such as representation learning, cyclic
loess, contrast, and quantile normalization algorithms. Also,
we will apply other machine learning techniques, such as
statistical relational learning, multilinear subspace learning,
and association rule learning. As more appropriate param-
eters are applied to the evolutionary algorithm or machine
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Figure 10: Individual maps, with AWS in blue dots, for GA heavy rainfall prediction after from 1 to 6 hours (ETS).

learning techniques, we expect to get better results. We have
validated our algorithms with AWS data; however, it would
be interesting to examine the performance with, for example,
satellite data as another future work.

Appendices

A. Spatial and Temporal Distribution of
Heavy Rainfall over South Korea

We calculated the rainfall duration, whichmeets the criterion
of heavy rainfall, from each automatic weather station for the
period from 2007 to 2010. We divided the rainfall duration
by 100 and let the result be depicted in the map. Figure 11
shows the distribution of heavy rainfall for the whole seasons.
Figure 12 shows the distribution of heavy rainfall by seasons.
Most heavy rainfalls have been concentrated in summer, and
they have a wide precipitation range regionally. Also, their
frequencies are quite different from region to region.

B. k-Nearest Neighbors Classifier

In pattern recognition, the k-nearest neighbors algorithm (k-
NN) [29] is a method for classifying objects based on the

closest training examples in the feature space. k-NN is a
type of instance-based learning, or lazy learning, where the
function is only approximated locally, and all computation is
deferred until classification. The k-NN algorithm is amongst
the simplest of all machine learning algorithms: an object is
classified by a majority vote of its neighbors, with the object
being assigned to the class most common amongst its k-
nearest neighbors (𝑘 is a positive integer, typically small).The
k-NN classifier is commonly based on the Euclidean distance
between a testing sample and the specified training samples.

Golub et al. [30] developed a procedure that uses a fixed
subset of informative genes and makes a prediction based
on the expression level of these genes in a new sample. Each
informative gene casts a weighted vote for one of the classes,
with themagnitude of each vote dependent on the expression
level in the new sample, and the degree of that gene’s
correlation with the class distinction in their class predictor.
We made a variant k-nearest neighbors algorithm (k-VNN)
that the degree (𝜌󸀠) of genes’ correlation was applied to a
majority vote of its neighbors. Box 2 shows the equation
calculating correlation between feature and class. In Box 2,
𝑔 means a feature (i.e., a weather element) and 𝐶 means a
class (i.e., heavy-rain or no-heavy-rain). The test results of k-
VNN were better than those of k-NN. We set 𝑘 to be 3 in our
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Box 2: Correlation 𝜌󸀠 between feature 𝑔 and class 𝐶 (0 or 1) [30, 31].
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Figure 11: The distribution of heavy rainfall for the whole seasons
(2007–2010).

experiments because it is expected that the classifier will show
low performance if 𝑘 is just 1 and it will take a long computing
time when 𝑘 is 5 or more.

C. Support Vector Machine

Support vector machines (SVM) [32] are a set of related
supervised learning methods that analyze data and recognize
patterns and are used for classification and regression analy-
sis. The standard SVM takes a set of input data and predicts,
for each given input, which of two possible classes the input is
amember of, whichmakes the SVManonprobabilistic binary
linear classifier. Since an SVM is a classifier, it is then given
a set of training examples, each marked as belonging to one
of two categories, and an SVM training algorithm builds a
model that assigns new examples into one category or the
other. Intuitively, an SVM model is a representation of the
examples as points in space, mapped so that the examples of
the separate categories are divided by a clear gap that is as
wide as possible. New examples are then mapped into that
same space and predicted to belong to a category, based on
which side of the gap they fall on.

D. Evolutionary Computation

A genetic algorithm (GA) is a search heuristic that mimics
the process of natural evolution, and this heuristic is routinely
used to generate useful solutions to optimization and search
problems [33]. In the process of a typical genetic algorithm,
the evolution starts from the population of completely ran-
dom individuals, and the fitness of the whole population is
determined. Each generation consists of several operations,
such as selection, crossover, mutation, and replacement.
Some individuals in the current population are replaced with
new individuals to form a new population. Finally, this gener-
ational process is repeated, until a termination condition has
been reached.

Differential evolution (DE) is an evolutionary (direct-
search) algorithm, which has been mainly used to solve opti-
mization problems. DE shares similarities with traditional
evolutionary algorithms. However, it does not use binary
encoding as a simple genetic algorithm, and it does not use
a probability density function to self-adapt its parameters as
an evolution strategy. Instead, DE performs mutation, based
on the distribution of the solutions in the current population.
In this way, search directions and possible step sizes depend
on the location of the individuals selected to calculate the
mutation values [34].

E. Differences between Adopted Methods

In applied mathematics and theoretical computer science,
combinatorial optimization is a topic that consists of finding
an optimal object from a finite set of objects. In many such
problems, exhaustive search is not feasible. It operates on the
domain of those optimization problems, in which the set of
feasible solutions is discrete or can be reduced to discrete, and
in which the goal is to find the best solution [33].

Feature selection is a problem to get a subset among
all features, and it is a kind of combinatorial optimization.
Genetic algorithms (GAs) and differential evolutions (DEs)
use a random element within an algorithm for optimization
or combinatorial optimization, and they are typically used
to solve the problems of combinatorial optimization such as
feature selection, as in this paper.

Machine learning techniques include a number of sta-
tistical methods for handling classification and regression.
Machine learning mainly focuses on prediction, based on
known properties learned from the training data [33]. It is
not easy to use general machine learning techniques for
feature selection. In this paper, machine learning techniques
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Figure 12: The distribution of heavy rainfall by seasons (2007–2010).

were used for classification. GA and DE could be used for
regression, but they have a weakness in handling regression
because these algorithms will take longer computing time
than other regression algorithms.

F. Detailed Statistics of Experimental Results

Tables 8–11 show SVM (with polynomial kernel) test results
for GA and DE. As shown in the contingency Table 6, the test
results show ETS and other scores. We defined CE and WP
to be forecasting the coming event and the whole process of
heavy rainfall, respectively. The test results include the num-
ber of used automatic weather stations by each prediction
hour, and the number of those is equally set, in the same
prediction hour of each experiment. As a result, GA was
considerably superior to DE.
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