2,528 research outputs found

    Total Nuclear Reaction Cross Section Induced by Halo Nuclei and Stable Nuclei

    Full text link
    We develop the method for the calculation of the total reaction cross sections induced by the halo nuclei and stable nuclei. This approach is based on the Glauber theory, which is valid for nuclear reactions at high energy. It is extended for nuclear reactions at low energy and intermediate energy by including both the quantum correction and Coulomb correction under the assumption of the effective nuclear density distribution. The calculated results of the total reaction cross section induced by stable nuclei agree well with the 30 experimental data within 10 percent accuracy.The comparison between the numerical results and the 20 experimental data for the total nuclear reaction cross section induced by the neutron halo nuclei and the proton halo nuclei indicates a satisfactory agreement after considering the halo structure of these nuclei, which implies the quite different mean fields for the nuclear reactions induced by halo nuclei and stable nuclei. The halo nucleon distributions and the root mean square radii of these nuclei can be extracted from above comparison based on the improved Glauber model, which indicate clearly the halo structures of these nuclei. Especially, it is clear to see that the medium correction of the nucleon-nucleon collision has little effect on the total reaction cross sections induced by the halo nuclei due to the very weak binding and the very extended density distribution.Comment: 15 pages,2 figures. Communucations in Theoretical Physics, (2003) in pres

    (E,E)-N,N′-Bis­(4-methoxy­benzyl­idene)cyclo­hexane-1,2-diamine

    Get PDF
    In the title compound, C22H26N2O2, the meth­oxy and the benzyl­idene groups are essentially coplanar, and the cyclo­hexane ring has a chair conformation. The two halves of the mol­ecule are related by a twofold rotation. The crystal structure is stabilized only by van der Waals inter­actions

    Chandrasekhar's Dynamical Friction and non-extensive statistics

    Full text link
    The motion of a point like object of mass MM passing through the background potential of massive collisionless particles (m<<Mm << M) suffers a steady deceleration named dynamical friction. In his classical work, Chandrasekhar assumed a Maxwellian velocity distribution in the halo and neglected the self gravity of the wake induced by the gravitational focusing of the mass MM. In this paper, by relaxing the validity of the Maxwellian distribution due to the presence of long range forces, we derive an analytical formula for the dynamical friction in the context of the qq-nonextensive kinetic theory. In the extensive limiting case (q=1q = 1), the classical Gaussian Chandrasekhar result is recovered. As an application, the dynamical friction timescale for Globular Clusters spiraling to the galactic center is explicitly obtained. Our results suggest that the problem concerning the large timescale as derived by numerical NN-body simulations or semi-analytical models can be understood as a departure from the standard extensive Maxwellian regime as measured by the Tsallis nonextensive qq-parameter.Comment: 16pp 5 figs, revised and extended version of arXiv:1202.1873 . Accepted for publication by JCA

    Improvements on a unified dark matter model

    Get PDF
    AbstractWe study, by means of a spherical collapse model, the effect of shear, rotation, and baryons on a generalized Chaplygin gas (gCg) dominated universe. We show that shear, rotation, and the presence of baryons slow down the collapse compared to the simple spherical collapse model. The slowing down in the growth of density perturbation is able to solve the instability of the unified dark matter (UDM) models described in previous papers (e.g
    • …
    corecore