4,389 research outputs found

    Investigation of Thermal Stimuli for Lane Changes

    Get PDF
    Haptic feedback has been widely studied for in-car interactions. However, most of this research has used vibrotactile cues. This paper presents two studies that examine novel thermal feedback for navigation during simulated driving for a lane change task. In the first, we compare the distraction and time differences of audio and thermal feedback. The results show that the presentation of thermal stimuli does not increase lane deviation, but the time needed to complete a lane change increased by 1.82 seconds. In the second study, the influence of variable changes of thermal stimuli on the lane change task performance was tested. We found that the same stimulus design for warm and cold temperatures does not always elicit the same results. Furthermore, variable alterations can have different effects on specified tasks. This suggests that the design of thermal stimuli is highly dependent on what task result should be maximized

    Development and Validation of the Holistic Cognition Scale

    Get PDF
    This paper introduces a new scale to measure cognitive cultural differences, drawing on the theory of analytic versus holistic thought. Examining culture from a cognitive perspective is a challenge to traditional values-based approaches. Existing measures based on this framework are methodologically problematic and warrant renewal. This paper presents development and validation studies for a new instrument that measures analytic versus holistic cognitive tendencies at the individual level. The scale assesses four previously established dimensions: attention, causality, contradiction, and change. The present work follows well-established scale development protocols and the results show that the 16-item Holistic Cognition Scale (HCS) is a valid and reliable measure of analytic versus holistic thought. Three new studies with four unique samples (N = 41; 272; 454; and 454) provide evidence to support the content validity, reliability, and factor structure of the new instrument, as well as its convergent, discriminant, and concurrent validity against comparable constructs. Convergent validity is established against measures of compromise, intuition, complexity, and collectivism; predictive validity is established against Hofstede’s (1980) five cultural value dimensions; and discriminant validity is established using the average variance extracted from a confirmatory factor analysis. The new HCS is an improvement over previous attempts with a balanced number of forward- and reverse-scored items, superior reliability, less redundancy, and stronger factor loadings

    GOES-R Series GEO Side-Lobe Capable GPSR Post-Launch Refinements and Operational Capabilities

    Get PDF
    This paper addresses three topics: 1) EOPP (EOP (Earth Orientation Prediction) Parameters) file modification, 2) Kalman filter parameter tuning regarding maneuvers and 3) off-pointing GPS (Global Positioning System) tracking capability. GOES-R (Geostationary Operational Environmental Satellite-R Series) is the first in a 4-part series of new weather satellites set to replace and upgrade the older GOES constellation. Two GOES-R series have been launched to date, GOES-S and GOES-R. GOES-R is operational over the Eastern United States and GOES-S over the West. The Global Positioning System Receiver (GPSR) on board this geostationary weather satellite is a mission critical enabling technology which has been both tested on the ground and evaluated on-orbit to verify its effectivity. Since becoming operational in November 2016, the GPSR onboard has performed extremely well under nominal circumstances. Further refinements regarding a variety of facets have taken place since the launch of GOES-R. One such refinement was the implementation of a modified EOP (Earth Orientation Prediction) parameter set to improve ECEF (Earth Centered Earth Fixed) to ECI (Earth Centered Inertial) transformation by restoring zonal tides removed from the EOP parameter fit per tech note 36. Another relevant refinement combined thermal consideration with Kalman filter tuning to improve orbit determination performance during maneuvers. Now with two years of data and two vehicles in orbit many capabilities of the GPSR have been identified and defined to a higher degree. For example, metrics on side-lobe tracking and off-Nadir tracking capabilities have been quantified to a high degree. This paper will seek to supplement the ESA (European Space Agency) GNC 2017 GOES-R GPSR performance paper as a deeper dive on specific tracking capabilities and performance improvements now implemented on the GOES-R and GOES-S vehicles

    Guess & Sketch: Language Model Guided Transpilation

    Full text link
    Maintaining legacy software requires many software and systems engineering hours. Assembly code programs, which demand low-level control over the computer machine state and have no variable names, are particularly difficult for humans to analyze. Existing conventional program translators guarantee correctness, but are hand-engineered for the source and target programming languages in question. Learned transpilation, i.e. automatic translation of code, offers an alternative to manual re-writing and engineering efforts. Automated symbolic program translation approaches guarantee correctness but struggle to scale to longer programs due to the exponentially large search space. Their rigid rule-based systems also limit their expressivity, so they can only reason about a reduced space of programs. Probabilistic neural language models (LMs) produce plausible outputs for every input, but do so at the cost of guaranteed correctness. In this work, we leverage the strengths of LMs and symbolic solvers in a neurosymbolic approach to learned transpilation for assembly code. Assembly code is an appropriate setting for a neurosymbolic approach, since assembly code can be divided into shorter non-branching basic blocks amenable to the use of symbolic methods. Guess & Sketch extracts alignment and confidence information from features of the LM then passes it to a symbolic solver to resolve semantic equivalence of the transpilation input and output. We test Guess & Sketch on three different test sets of assembly transpilation tasks, varying in difficulty, and show that it successfully transpiles 57.6% more examples than GPT-4 and 39.6% more examples than an engineered transpiler. We also share a training and evaluation dataset for this task

    A candidate fusion engineering material, WC-FeCr

    Get PDF
    A new candidate fusion engineering material, WC-FeCr, has been irradiated with He ions at 25 and 500 °C. Ions were injected at 6 keV to a dose of ~15 dpa and 50 at. % He, simulating direct helium injection from the plasma. The microstructural evolution was continuously characterised in situ using transmission electron microscopy. In the FeCr phase, a coarse array of 3–6 nm bubbles formed. In the WC, bubbles were less prominent and smaller (~2 nm). Spherical-cap bubbles formed at hetero-phase interfaces of tertiary precipitates, indicating that enhanced processing routes to minimise precipitation could further improve irradiation tolerance

    Willingness to Use a Wearable Device Capable of Detecting and Reversing Overdose Among People Who Use Opioids in Philadelphia

    Get PDF
    Background: The incidence of opioid-related overdose deaths has been rising for 30 years and has been further exacerbated amidst the COVID-19 pandemic. Naloxone can reverse opioid overdose, lower death rates, and enable a transition to medication for opioid use disorder. Though current formulations for community use of naloxone have been shown to be safe and effective public health interventions, they rely on bystander presence. We sought to understand the preferences and minimum necessary conditions for wearing a device capable of sensing and reversing opioid overdose among people who regularly use opioids. Methods: We conducted a combined cross-sectional survey and semi-structured interview at a respite center, shelter, and syringe exchange drop-in program in Philadelphia, Pennsylvania, USA during the COVID-19 pandemic in August and September 2020. The primary aim was to explore the proportion of participants who would use a wearable device to detect and reverse overdose. Preferences regarding designs and functionalities were collected via a questionnaire with items having Likert-based response options and a semi-structured interview intended to elicit feedback on prototype designs. Independent variables included demographics, opioid use habits, and previous experience with overdose. Results: A total of 97 adults with an opioid-use history of at least 3 months were interviewed. A majority of survey participants (76%) reported a willingness to use a device capable of detecting an overdose and automatically administering a reversal agent upon initial survey. When reflecting on the prototype, most respondents (75.5%) reported that they would wear the device always or most of the time. Respondents indicated discreetness and comfort as important factors that increased their chance of uptake. Respondents suggested that people experiencing homelessness and those with low tolerance for opioids would be in greatest need of the device. Conclusions: The majority of people sampled with a history of opioid use in an urban setting were interested in having access to a device capable of detecting and reversing an opioid overdose. Participants emphasized privacy and comfort as the most important factors influencing their willingness to use such a device. Trial Registration: NCT0453059

    Tissue- specific angiogenic and invasive properties of human neonatal thymus and bone MSCs: Role of SLIT3- ROBO1

    Full text link
    Although mesenchymal stem/stromal cells (MSCs) are being explored in numerous clinical trials as proangiogenic and proregenerative agents, the influence of tissue origin on the therapeutic qualities of these cells is poorly understood. Complicating the functional comparison of different types of MSCs are the confounding effects of donor age, genetic background, and health status of the donor. Leveraging a clinical setting where MSCs can be simultaneously isolated from discarded but healthy bone and thymus tissues from the same neonatal patients, thereby controlling for these confounding factors, we performed an in vitro and in vivo paired comparison of these cells. We found that both neonatal thymus (nt)MSCs and neonatal bone (nb)MSCs expressed different pericytic surface marker profiles. Further, ntMSCs were more potent in promoting angiogenesis in vitro and in vivo and they were also more motile and efficient at invading ECM in vitro. These functional differences were in part mediated by an increased ntMSC expression of SLIT3, a factor known to activate endothelial cells. Further, we discovered that SLIT3 stimulated MSC motility and fibrin gel invasion via ROBO1 in an autocrine fashion. Consistent with our findings in human MSCs, we found that SLIT3 and ROBO1 were expressed in the perivascular cells of the neonatal murine thymus gland and that global SLIT3 or ROBO1 deficiency resulted in decreased neonatal murine thymus gland vascular density. In conclusion, ntMSCs possess increased proangiogenic and invasive behaviors, which are in part mediated by the paracrine and autocrine effects of SLIT3.Comparison of mesenchymal stem/stromal cells (MSCs) from the human neonatal thymus and bone revealed that the axon guidance molecule SLIT3 is important for MSC proangiogenic effects. Not only is SLIT3 an endothelial cell stimulatory factor, but it also promotes MSC migration and invasion in an autocrine fashion via the ROBO1 receptor. Deficiency of either SLIT3 or ROBO1 can decrease the vascularization of the neonatal thymus.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156475/2/sct312723_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156475/1/sct312723.pd

    Controlling Visible Light-Driven Photoconductivity in Self-Assembled Perylene Bisimide Structures

    Get PDF
    Alanine-functionalized perylene bisimides (PBI-A) are promising photoconductive materials. PBI-A self-assembles at high concentrations (mM) into highly ordered wormlike structures that are suitable for charge transport. However, we previously reported that the photoconductive properties of dried films of PBI-A did not correlate with the electronic absorption spectra as activity was only observed under UV light. Using transient absorption spectroscopy, we now demonstrate that charge separation can occur within these PBI-A structures in water under visible light. The lack of charge separation in the films is shown by DFT calculations to be due to a large ion-pair energy in the dried samples which is due to both the low dielectric environment and the change in the site of hole-localization upon drying. However, visible light photoconductivity can be induced in dried PBI-A films through the addition of methanol vapor, a suitable electron donor. The extension of PBI-A film activity into the visible region demonstrates that this class of self-assembled PBI-A structures may be of use in a heterojunction system when coupled to a suitable electron donor
    corecore