960 research outputs found

    Lipid-lowering and kidney

    Get PDF

    Highly efficient active optical interconnect incorporating a partially chlorinated ribbon POF in conjunction with a visible VCSEL

    Get PDF
    A low-loss 4-ch active optical interconnect (AOI) enabling passive alignment was proposed and built resorting to a transmitter (Tx) incorporating a red 680-nm VCSEL, which is linked to a receiver (Rx) module via a partially chlorinated ribbon POF. The POF was observed to exhibit an extremely low loss of similar to 0.24 dB/m at lambda = 680 nm, in comparison to similar to 1.29 dB/m at lambda = 850 nm, and a large numerical aperture of similar to 0.42. Both the Tx and Rx, which taps into a beam router based on collimated beam optics involving a pair of spherical lenses, were meant to be substantially alignment tolerant and compact. The achieved tolerance for the constructed modules was beyond 40 m in terms of the positioning of VCSEL and photodetector. The proposed AOI was completed by linking the Tx with the Rx via a 3-m long ribbon POF, incurring a transmission loss of as small as 3.2 dB. The AOI was practically assessed in terms of a high-speed data transmission over a wide range of temperatures and then exploited to convey full HD video signals. (C) 2014 Optical Society of Americ

    Development and validation of an ecofriendly chemiluminescence method for the determination of citalopram in pharmaceutical preparations using Cu2+-grafted oxidized multiwall carbon nanotubes

    Get PDF
    Anovel and sensitive chemiluminescence (CL) method was developed and validated for the determination of citalopram in bulk dosage form and in pharmaceutical preparations. The method is based on the use of Cu2+-grafted oxidized multiwall carbon nanotubes (Cu/ox-MWCNTs). The weak CL signal arising fromthe reaction of an alkaline luminol-H2O2 system was significantly enhanced by the addition of citalopram in the presence of ox-MWCNTs/Cu2+. Furthermore, ox-MWCNTs/Cu2+ exhibited exceptional catalytic activity towards the oxidation of luminol in the luminol-H2O2 CL reaction. Multiwalled carbon nanotubes (MWCNTs) were characterized by scanning electron microscopy (SEM), which also showed the attachment of Cu2+ toMWCNTs. Various factors affecting CL intensity were carefully investigated and optimized for citalopram quantitation. The CL intensity was proportional to citalopram concentration in the range 0.2–8.0 μg mL–1, with a correlation coefficient of 0.996. The limit of detection (LOD) and limit of quantification were 2.29 × 10–5 μg mL–1 and 7.64 × 10–5 μg mL–1, respectively, and its reproducibility was satisfactory with a relative standard deviation (RSD) of 2.59 % (n = 5). The interference effects of common excipients were studied, and the developed method was effectively applied for the determination of citalopram in pure formand in pharmaceutical preparations. Percentage recoveries were calculated and ranged from 98.67 to 101.46 % for the pure form and from 97.38 to 101.72 % for pharmaceutical preparations.Keywords: Chemiluminescence, Citalopram, Luminol, oxidized multiwall carbon nanotube

    EFFECTS OF MO, CR, AND V ADDITIONS ON TENSILE AND CHARPY IMPACT PROPERTIES OF API X80 PIPELINE STEELS

    Get PDF
    In this study, four API X80 pipeline steels were fabricated by varying Mo, Cr, and V additions, and their microstructures and crystallographic orientations were analyzed to investigate the effects of their alloying compositions on tensile properties and Charpy impact properties. Because additions of Mo and V promoted the formation of fine acicular ferrite (AF) and granular bainite (GB) while prohibiting the formation of coarse GB, they increased the strength and upper-shelf energy (USE) and decreased the energy transition temperature (ETT). The addition of Cr promoted the formation of coarse GB and hard secondary phases, thereby leading to an increased effective grain size, ETT, and strength, and a decreased USE. The addition of V resulted in a higher strength, a higher USE, a smaller effective grain size, and a lower ETT, because it promoted the formation of fine and homogeneous of AF and GB. The steel that contains 0.3 wt pct Mo and 0.06 wt pct V without Cr had the highest USE and the lowest ETT, because its microstructure was composed of fine AF and GB while its maintained excellent tensile properties.X1126sciescopu

    Efficient Conversion of Acetate to 3-Hydroxypropionic Acid by Engineered Escherichia coli

    Get PDF
    Acetate, which is an abundant carbon source, is a potential feedstock for microbial processes that produce diverse value-added chemicals. In this study, we produced 3-hydroxypropionic acid (3-HP) from acetate with engineered Escherichia coli. For the efficient conversion of acetate to 3-HP, we initially introduced heterologous mcr (encoding malonyl-CoA reductase) from Chloroflexus aurantiacus. Then, the acetate assimilating pathway and glyoxylate shunt pathway were activated by overexpressing acs (encoding acetyl-CoA synthetase) and deleting iclR (encoding the glyoxylate shunt pathway repressor). Because a key precursor malonyl-CoA is also consumed for fatty acid synthesis, we decreased carbon flux to fatty acid synthesis by adding cerulenin. Subsequently, we found that inhibiting fatty acid synthesis dramatically improved 3-HP production (3.00 g/L of 3-HP from 8.98 g/L of acetate). The results indicated that acetate can be used as a promising carbon source for microbial processes and that 3-HP can be produced from acetate with a high yield (44.6% of the theoretical maximum yield).11Ysciescopu

    trans-Dichloridobis(2,2-dimethyl­prop­ane-1,3-diamine-κ2 N,N′)chromium(III) perchlorate

    Get PDF
    In the title salt, [CrCl2(C5H14N2)2]ClO4, the Cr atom is in a trans-CrCl2N4 octa­hedral environment comprising the four N atoms of two chelating 2,2-dimethyl­propane-1,3-diamine ligands and two Cl atoms. The two six-membered CrC3N2 rings in the cation adopt anti chair–chair conformations with respect to each other. The perchlorate anion is disordered over two positions in respect of the Cl and an O atom in a 6:4 ratio. N—H⋯O hydrogen bonds link the cations and anions into a layer structure

    Echovirus 30 Induced Neuronal Cell Death through TRIO-RhoA Signaling Activation

    Get PDF
    BACKGROUND: Echovirus 30 (Echo30) is one of the most frequently identified human enteroviruses (EVs) causing aseptic meningitis and encephalitis. However the mechanism underlying the pathogenesis of Echo30 infection with significant clinical outcomes is not completely understood. The aim of this investigation is to illustrate molecular pathologic alteration in neuronal cells induced by Echo30 infection using clinical isolate from young patient with neurologic involvement. METHODOLOGY/PRINCIPAL FINDINGS: To characterize the neuronal cellular response to Echo30 infection, we performed a proteomic analysis based on two-dimensional gel electrophoresis (2-DE) and MALDI-TOF/TOF Mass Spectrophotometric (MS) analysis. We identified significant alteration of several protein expression levels in Echo30-infected SK-N-SH cells. Among these proteins, we focused on an outstanding up-regulation of Triple functional domain (TRIO) in Echo30-infected SK-N-SH cells. Generally, TRIO acts as a key component in the regulation of axon guidance and cell migration. In this study, we determined that TRIO plays a role in the novel pathways in Echo30 induced neuronal cell death. CONCLUSIONS/SIGNIFICANCE: Our finding shows that TRIO plays a critical role in neuronal cell death by Echo30 infection. Echo30 infection activates TRIO-guanine nucleotide exchange factor (GEF) domains (GEFD2) and RhoA signaling in turn. These results suggest that Echo30 infection induced neuronal cell death by activation of the TRIO-RhoA signaling. We expect the regulation of TRIO-RhoA signaling may represent a new therapeutic approach in treating aseptic meningitis and encephalitis induced by Echo30
    corecore