11,684 research outputs found
URNet : User-Resizable Residual Networks with Conditional Gating Module
Convolutional Neural Networks are widely used to process spatial scenes, but
their computational cost is fixed and depends on the structure of the network
used. There are methods to reduce the cost by compressing networks or varying
its computational path dynamically according to the input image. However, since
a user can not control the size of the learned model, it is difficult to
respond dynamically if the amount of service requests suddenly increases. We
propose User-Resizable Residual Networks (URNet), which allows users to adjust
the scale of the network as needed during evaluation. URNet includes
Conditional Gating Module (CGM) that determines the use of each residual block
according to the input image and the desired scale. CGM is trained in a
supervised manner using the newly proposed scale loss and its corresponding
training methods. URNet can control the amount of computation according to
user's demand without degrading the accuracy significantly. It can also be used
as a general compression method by fixing the scale size during training. In
the experiments on ImageNet, URNet based on ResNet-101 maintains the accuracy
of the baseline even when resizing it to approximately 80% of the original
network, and demonstrates only about 1% accuracy degradation when using about
65% of the computation.Comment: 12 page
Investigation of the SH3BP2 Gene Mutation in Cherubism
Cherubism is a rare developmental lesion of the jaw that is generally inherited as an autosomal dominant trait. Recent studies have revealed point mutations in the SH3BP2 gene in cherubism patients. In this study, we examined a 6-year-old Korean boy and his family. We found a Pro418Arg mutation in the SH3BP2 gene of the patient and his mother. A father and his 30-month-old younger brother had no mutations. Immunohistochemically, the multinucleated giant cells proved positive for CD68 and tartrate-resistant acid phosphatase (TRAP). Numerous spindle-shaped stromal cells expressed a ligand for receptor activator of nuclear factor kB (RANKL), but not in multinucleated giant cells. These results provide evidence that RANKL plays a critical role in the differentiation of osteoclast precursor cells to multinucleated giant cells in cherubism. Additionally, genetic analysis may be a useful method for differentiation of cherubism.</p
Theoretical Basis of Electrocatalysis
In this chapter, we introduce the density functional theory (DFT)-based computational approaches to the study of various electrochemical reactions (hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR)) occurring on heterogeneous catalysis surfaces. A detailed computational approach to the theoretical interpretation of electrochemical reactions and structure-catalytic activity relationships for graphene-based catalysts will be discussed. The electrocatalytic activity of catalysis can be theoretically evaluated by overpotential value determined from free energy diagram (FED) of electrochemical reactions. By comparing electrocatalytic activity of systematically designed graphene-based catalysts, we will discuss the structure-catalytic activity relationships, especially the electronic and geometrical effects of heteroatom dopants
Partial privatization and subsidization in a time-consistent policy: output versus R&D subsidies
This study revisits welfare comparisons between output and R&D subsidies for a mixed duopoly with partial privatization in a time-consistent policy framework. We show that an output subsidy is welfare-superior to an R&D subsidy policy only when the degree of privatization is high. We also show that the government has a lower incentive to privatize the public firm under the R&D subsidy but full nationalization with an R&D subsidy can decrease the welfare than full privatization with an output subsidy
Endogenous timing game with R&D decisions and output subsidies
This paper investigates strategic choices between duopolistic firms’ R&D investments and government’s output subsidies in an endogenous timing game with research spillovers. We show that a simultaneous-move game among three players appears at equilibrium if the spillovers are very low while government leadership with both firms’ simultaneous-move game appears otherwise. We also show that government followership appears unless the spillovers are low or high, while both the government leadership and followership outcomes are socially desirable at quilibrium. However, a single firm’s leadership equilibrium appears if the spillovers are high, but it causes a welfare loss
- …