1,380 research outputs found
Compact Crossed-Dipole Antennas Loaded with Near-Field Resonant Parasitic Elements
© 2016 IEEE. Two compact planar crossed-dipole antennas loaded with near-field resonant parasitic (NFRP) elements are reported. The NFRP and crossed-dipole elements are designed for the desired circularly polarized (CP) radiation. By placing the NFRP element over the driven element at angles of 0° and 45°, respectively, dual-band and broadband CP antennas are realized. All radiating elements of antennas are 35 mm × 35 mm × 0.508 mm (0.187 λ0 × 0.187 λ0 × 0.0027 λ0 at 1.6 GHz) in size. The dual-band CP antenna has a measured S11 <-10-dB bandwidth of 226 MHz (1.473-1.699 GHz) and measured 3-dB axial ratio (AR) bandwidths of 12 MHz (1.530-1.542 GHz) and 35 MHz (1.580-1.615 GHz) with minimum AR CP frequencies of 1.535 GHz (AR = 0.26 dB) and 1.595 GHz (AR = 2.08 dB), respectively. The broadband CP antenna has a measured S11 <-10-dB bandwidth of 218 MHz (1.491-1.709 GHz) and a 3-dB AR bandwidth of 145 MHz (1.490-1.635 GHz). These compact antennas yield bidirectional electromagnetic fields with high radiation efficiency across their operational bandwidths
Recommended from our members
Observation of a Charge Density Wave Incommensuration Near the Superconducting Dome in Cu_{x}TiSe_{2}.
X-ray diffraction was employed to study the evolution of the charge density wave (CDW) in Cu_{x}TiSe_{2} as a function of copper intercalation in order to clarify the relationship between the CDW and superconductivity. The results show a CDW incommensuration arising at an intercalation value coincident with the onset of superconductivity at around x=0.055(5). Additionally, it was found that the charge density wave persists to higher intercalant concentrations than previously assumed, demonstrating that the CDW does not terminate inside the superconducting dome. A charge density wave peak was observed in samples up to x=0.091(6), the highest copper concentration examined in this study. The phase diagram established in this work suggests that charge density wave incommensuration may play a role in the formation of the superconducting state
Empirical likelihood estimation of the spatial quantile regression
The spatial quantile regression model is a useful and flexible model for analysis of empirical problems with spatial dimension. This paper introduces an alternative estimator for this model. The properties of the proposed estimator are discussed in a comparative perspective with regard to the other available estimators. Simulation evidence on the small sample properties of the proposed estimator is provided. The proposed estimator is feasible and preferable when the model contains multiple spatial weighting matrices. Furthermore, a version of the proposed estimator based on the exponentially tilted empirical likelihood could be beneficial if model misspecification is suspect
Evidence of a metabolic memory to early-life dietary restriction in male C57BL/6 mice
<p>Background: Dietary restriction (DR) extends lifespan and induces beneficial metabolic effects in many animals. What is far less clear is whether animals retain a metabolic memory to previous DR exposure, that is, can early-life DR preserve beneficial metabolic effects later in life even after the resumption of ad libitum (AL) feeding. We examined a range of metabolic parameters (body mass, body composition (lean and fat mass), glucose tolerance, fed blood glucose, fasting plasma insulin and insulin-like growth factor 1 (IGF-1), insulin sensitivity) in male C57BL/6 mice dietary switched from DR to AL (DR-AL) at 11 months of age (mid life). The converse switch (AL-DR) was also undertaken at this time. We then compared metabolic parameters of the switched mice to one another and to age-matched mice maintained exclusively on an AL or DR diet from early life (3 months of age) at 1 month, 6 months or 10 months post switch.</p>
<p>Results: Male mice dietary switched from AL-DR in mid life adopted the metabolic phenotype of mice exposed to DR from early life, so by the 10-month timepoint the AL-DR mice overlapped significantly with the DR mice in terms of their metabolic phenotype. Those animals switched from DR-AL in mid life showed clear evidence of a glycemic memory, with significantly improved glucose tolerance relative to mice maintained exclusively on AL feeding from early life. This difference in glucose tolerance was still apparent 10 months after the dietary switch, despite body mass, fasting insulin levels and insulin sensitivity all being similar to AL mice at this time.</p>
<p>Conclusions: Male C57BL/6 mice retain a long-term glycemic memory of early-life DR, in that glucose tolerance is enhanced in mice switched from DR-AL in mid life, relative to AL mice, even 10 months following the dietary switch. These data therefore indicate that the phenotypic benefits of DR are not completely dissipated following a return to AL feeding. The challenge now is to understand the molecular mechanisms underlying these effects, the time course of these effects and whether similar interventions can confer comparable benefits in humans.</p>
- …