10,116 research outputs found

    Excess Enthalpies of Mixing of Binary Mixtures of NaCl, KCl, NaBr and KBr in Mixed Ternary Solvent Systems at 298.15 K

    Get PDF
    Excess enthalpies of mixing for six possible binary combinations of solutions of NaCl, KCl, NaBr and KBr in mixed ternary solvents composed of formamide, 1,4-dioxane and water have been determined using a flow microcalorimeter at constant ionic strengths of 0.500 and 1.000 mol kg–1 at 298.15 K. Unlike the case of water, the data do not supportYoung’s cross square rule. Pitzer’s virial coefficient theory has been utilized to obtain binary and ternary interaction parameters, i.e. θH and ψH. The data were also analysed in terms of the Friedman model and it was found that interactions between solvated ions are dictated not only by coulombic interactions but also by appreciable asymmetric effects.Keywords: Enthalpy of mixing, ternary solvents, Pitzer theory, Friedman model, cross square rule

    Increased elastase sensitivity and decreased intramolecular interactions in the more transmissible 501Y.V1 and 501Y.V2 SARS-CoV-2 variants' spike protein-an in silico analysis.

    Full text link
    Two SARS-CoV-2 variants of concern showing increased transmissibility relative to the Wuhan virus have recently been identified. Although neither variant appears to cause more severe illness nor increased risk of death, the faster spread of the virus is a major threat. Using computational tools, we found that the new SARS-CoV-2 variants may acquire an increased transmissibility by increasing the propensity of its spike protein to expose the receptor binding domain via proteolysis, perhaps by neutrophil elastase and/or via reduced intramolecular interactions that contribute to the stability of the closed conformation of spike protein. This information leads to the identification of potential treatments to avert the imminent threat of these more transmittable SARS-CoV-2 variants

    Two-Dimensional Vortex Lattice Melting

    Full text link
    We report on a Monte-Carlo study of two-dimensional Ginzburg-Landau superconductors in a magnetic field which finds clear evidence for a first-order phase transition characterized by broken translational symmetry of the superfluid density. A key aspect of our study is the introduction of a quantity proportional to the Fourier transform of the superfluid density which can be sampled efficiently in Landau gauge Monte-Carlo simulations and which satisfies a useful sum rule. We estimate the latent heat per vortex of the melting transition to be 0.38kBTM\sim 0.38 k_B T_M where TMT_M is the melting temperature.Comment: 10 pages (4 figures available on request), RevTex 3.0, IUCM93-00

    Modeling hormonal and inflammatory contributions to preterm and term labor using uterine temporal transcriptomics

    Get PDF
    BACKGROUND: Preterm birth is now recognized as the primary cause of infant mortality worldwide. Interplay between hormonal and inflammatory signaling in the uterus modulates the onset of contractions; however, the relative contribution of each remains unclear. In this study we aimed to characterize temporal transcriptome changes in the uterus preceding term labor and preterm labor (PTL) induced by progesterone withdrawal or inflammation in the mouse and compare these findings with human data. METHODS: Myometrium was collected at multiple time points during gestation and labor from three murine models of parturition: (1) term gestation; (2) PTL induced by RU486; and (3) PTL induced by lipopolysaccharide (LPS). RNA was extracted and cDNA libraries were prepared and sequenced using the Illumina HiSeq 2000 system. Resulting RNA-Seq data were analyzed using multivariate modeling approaches as well as pathway and causal network analyses and compared against human myometrial transcriptome data. RESULTS: We identified a core set of temporal myometrial gene changes associated with term labor and PTL in the mouse induced by either inflammation or progesterone withdrawal. Progesterone withdrawal initiated labor without inflammatory gene activation, yet LPS activation of uterine inflammation was sufficient to override the repressive effects of progesterone and induce a laboring phenotype. Comparison of human and mouse uterine transcriptomic datasets revealed that human labor more closely resembles inflammation-induced PTL in the mouse. CONCLUSIONS: Labor in the mouse can be achieved through inflammatory gene activation yet these changes are not a requisite for labor itself. Human labor more closely resembles LPS-induced PTL in the mouse, supporting an essential role for inflammatory mediators in human "functional progesterone withdrawal." This improved understanding of inflammatory and progesterone influence on the uterine transcriptome has important implications for the development of PTL prevention strategies

    Screening of suitable cationic dopants for solar absorber material CZTS/Se: A first principles study

    Get PDF
    The earth abundant and non-toxic solar absorber material kesterite Cu2ZnSn(S/Se)(4) has been studied to achieve high power conversion efficiency beyond various limitations, such as secondary phases, antisite defects, band gap adjustment and microstructure. To alleviate these hurdles, we employed screening based approach to find suitable cationic dopant that can promote the current density and the theoretical maximum upper limit of the energy conversion efficiency (P(%)) of CZTS/Se solar devices. For this task, the hybrid functional (Heyd, Scuseria and Ernzerhof, HSE06) were used to study the electronic and optical properties of cation (Al, Sb, Ga, Ba) doped CZTS/Se. Our in-depth investigation reveals that the Sb atom is suitable dopant of CZTS/CZTSe and also it has comparable bulk modulus as of pure material. The optical absorption coefficient of Sb doped CZTS/Se is considerably larger than the pure materials because of easy formation of visible range exciton due to the presence of defect state below the Fermi level, which leads to an increase in the current density and P(%). Our results demonstrate that the lower formation energy, preferable energy gap and excellent optical absorption of the Sb doped CZTS/Se make it potential component for relatively high efficient solar cells

    The validity of using ICD-9 codes and pharmacy records to identify patients with chronic obstructive pulmonary disease

    Get PDF
    Background: Administrative data is often used to identify patients with chronic obstructive pulmonary disease (COPD), yet the validity of this approach is unclear. We sought to develop a predictive model utilizing administrative data to accurately identify patients with COPD. Methods: Sequential logistic regression models were constructed using 9573 patients with postbronchodilator spirometry at two Veterans Affairs medical centers (2003-2007). COPD was defined as: 1) FEV1/FVC <0.70, and 2) FEV1/FVC < lower limits of normal. Model inputs included age, outpatient or inpatient COPD-related ICD-9 codes, and the number of metered does inhalers (MDI) prescribed over the one year prior to and one year post spirometry. Model performance was assessed using standard criteria. Results: 4564 of 9573 patients (47.7%) had an FEV1/FVC < 0.70. The presence of ≥1 outpatient COPD visit had a sensitivity of 76% and specificity of 67%; the AUC was 0.75 (95% CI 0.74-0.76). Adding the use of albuterol MDI increased the AUC of this model to 0.76 (95% CI 0.75-0.77) while the addition of ipratropium bromide MDI increased the AUC to 0.77 (95% CI 0.76-0.78). The best performing model included: ≥6 albuterol MDI, ≥3 ipratropium MDI, ≥1 outpatient ICD-9 code, ≥1 inpatient ICD-9 code, and age, achieving an AUC of 0.79 (95% CI 0.78-0.80). Conclusion: Commonly used definitions of COPD in observational studies misclassify the majority of patients as having COPD. Using multiple diagnostic codes in combination with pharmacy data improves the ability to accurately identify patients with COPD.Department of Veterans Affairs, Health Services Research and Development (DHA), American Lung Association (CI- 51755-N) awarded to DHA, the American Thoracic Society Fellow Career Development AwardPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/84155/1/Cooke - ICD9 validity in COPD.pd

    Clipless management of the renal vein during hand-assist laparoscopic donor nephrectomy

    Get PDF
    BACKGROUND: Laparoscopic live donor nephrectomy has become the preferred method of donor nephrectomy at many transplant centers. The laparoscopic stapling device is commonly used for division of the renal vessels. Malfunction of the stapling device can occur, and is often due to interference from previously placed clips. We report our experience with a clipless technique in which no vascular clips are placed on tributaries of the renal vein at or near the renal hilum in order to avoid laparoscopic stapling device misfires. METHODS: From December 20, 2002 to April 12, 2005, 50 patients underwent hand-assisted laparoscopic left donor nephrectomy (LDN) at our institution. Clipless management of the renal vein tributaries was used in all patients, and these vessels were divided using either a laparoscopic stapling device or the LigaSureTM device (Valleylab, Boulder, CO). The medical and operative records of the donors and recipients were reviewed to evaluate patient outcomes. RESULTS: The mean follow-up time was 14 months. Of the 50 LDN procedures, there were no laparoscopic stapling device malfunctions and no vascular complications. All renal allografts were functioning at the time of follow-up. CONCLUSION: Laparoscopic stapling device failure due to deployment across previously placed surgical clips during laparoscopic live donor nephrectomy can be prevented by not placing clips on the tributaries of the renal vein. In our series, there were no vascular complications and no device misfires. We believe this clipless technique improves the safety of laparoscopic donor nephrectomy

    Atomic-scale combination of germanium-zinc nanofibers for structural and electrochemical evolution

    Get PDF
    Alloys are recently receiving considerable attention in the community of rechargeable batteries as possible alternatives to carbonaceous negative electrodes; however, challenges remain for the practical utilization of these materials. Herein, we report the synthesis of germanium-zinc alloy nanofibers through electrospinning and a subsequent calcination step. Evidenced by in situ transmission electron microscopy and electrochemical impedance spectroscopy characterizations, this one-dimensional design possesses unique structures. Both germanium and zinc atoms are homogenously distributed allowing for outstanding electronic conductivity and high available capacity for lithium storage. The as-prepared materials present high rate capability (capacity of similar to 50% at 20 C compared to that at 0.2 C-rate) and cycle retention (73% at 3.0 C-rate) with a retaining capacity of 546 mAh g(-1) even after 1000 cycles. When assembled in a full cell, high energy density can be maintained during 400 cycles, which indicates that the current material has the potential to be used in a large-scale energy storage system

    Genetic Improvement @ ICSE 2020

    Get PDF
    Following Prof. Mark Harman of Facebook's keynote and formal presentations (which are recorded in the proceedings) there was a wide ranging discussion at the eighth international Genetic Improvement workshop, GI-2020 @ ICSE (held as part of the 42nd ACM/IEEE International Conference on Software Engineering on Friday 3rd July 2020). Topics included industry take up, human factors, explainabiloity (explainability, justifyability, exploitability) and GI benchmarks. We also contrast various recent online approaches (e.g. SBST 2020) to holding virtual computer science conferences and workshops via the WWW on the Internet without face-2-face interaction. Finally we speculate on how the Coronavirus Covid-19 Pandemic will affect research next year and into the future
    corecore