263,148 research outputs found
High-temperature, long-life polyimide seals for hydraulic actuator rods
Two types of polyimide seals are developed for hydraulic actuator rod in low pressure second stage of two-stage configuration. Each seal melts test objectives of twenty million cycles of operation at 534 K. Analytical and experimental study results are discussed. Potential applications are given
The GSFC NASTRAN thermal analyzer new capabilities
An overview of four analysis capabilities, which developed and integrated into the NASTRAN Thermal Analyzer, is given. To broaden the scope of applications, these additions provide the NTA users with the following capabilities: (1) simulating a thermal louver as a means of the passive thermal control, (2) simulating a fluid loop for transporting energy as a means of the active thermal control, (3) condensing a large sized finite element model for an efficient transient thermal analysis, and (4) entering multiple boundary condition sets in a single submission for execution in steady state thermal analyses
Influence of quality control variables on failure of graphite/epoxy under extreme moisture conditions
Tension tests on graphite/epoxy composites were performed to determine the influence of various quality control variables on failure strength as a function of moisture and moderate temperatures. The extremely high and low moisture contents investigated were found to have less effect upon properties than did temperature or the quality control variables of specimen flaws and prepreg batch to batch variations. In particular, specimen flaws were found to drastically reduce the predicted strength of the composite, whereas specimens from different batches of prepreg displayed differences in strength as a function of temperature and extreme moisture exposure. The findings illustrate the need for careful specimen preparation, studies of flaw sensitivity, and careful quality control in any study of composite materials
Relativistic Coulomb Green's function in -dimensions
Using the operator method, the Green's functions of the Dirac and
Klein-Gordon equations in the Coulomb potential are derived for
the arbitrary space dimensionality . Nonrelativistic and quasiclassical
asymptotics of these Green's functions are considered in detail.Comment: 9 page
Microcracking mechanisms and interface toughening of semi-IPN polyimide matrix composites
A new research program was initiated as a preliminary phase. The following three objectives are being pursued for the overall program: to elucidate the mechanisms of microcracking for graphite fiber-reinforced semi-IPN polyimide matrix composites under mechanical and thermal cyclic loading; to devise material engineering solutions for possible improvement of fatigue damage resistance (or the increase of fatigue endurance strength) of semi-IPN matrix composites by tailoring of modulus and toughness of fiber-resin interface region; and to assess processing characteristics of the composites and their roles in controlling the resistance of composites to microcracking and the effectiveness of interface toughening. The main emphasis was placed upon the initial screening of material systems and optimization of processing conditions for semi-IPN matrix composites with tailored interface. As a first set of control material systems to study, the composites were prepared with unsized Celion 6000 graphite fiber reinforcement and the following resin matrices of varied fracture toughness: PMR-15 thermoset polyimide, semi-IPN of PNR-15 thermoset polyimide and NR150B2 thermoplastic polyimide in 75/25 ratio, and semi-IPN of PMR-15 and NR150B2 in 50/50 ratio. For the composites with the resin matrix of semi-IPN in 75/25 ratio, interface tailoring was attempted by using graphite fibers coated with the resins of systematically varied fracture toughness. In the continuing work, a broad range of interlayer toughness will be achieved by coating the fibers with reactants of semi-IPN having lower or higher content of thermoplastic constituent in comparison with the composition of surrounding resin matrix. In pursuing the objectives of the overall research program, the respective roles and interaction of critical parameters were defined
Recommended from our members
Persistence of UK Real Estate returns: a Markov chain analysis
The persistence of investment performance is a topic of perennial interest to investors. Efficient Markets theory tells us that past performance can not be used to predict future performance yet investors appear to be influenced by the historical performance in making their investment allocation decisions. The problem has been of particular interest to investors in real estate; not least because reported returns from investment in real estate are serially correlated thus implying some persistence in investment performance. This paper applies the established approach of Markov Chain analysis to investigate the relationship between past and present performance of UK real estate over the period 1981 to 1996. The data are analysed by sector, region and size. Furthermore some variations in investment performance classification are reported and the results are shown to be robust
Microscopic picture of aging in SiO2
We investigate the aging dynamics of amorphous SiO2 via molecular dynamics
simulations of a quench from a high temperature T_i to a lower temperature T_f.
We obtain a microscopic picture of aging dynamics by analyzing single particle
trajectories, identifying jump events when a particle escapes the cage formed
by its neighbors, and by determining how these jumps depend on the waiting time
t_w, the time elapsed since the temperature quench to T_f. We find that the
only t_w-dependent microscopic quantity is the number of jumping particles per
unit time, which decreases with age. Similar to previous studies for fragile
glass formers, we show here for the strong glass former SiO2 that neither the
distribution of jump lengths nor the distribution of times spent in the cage
are t_w-dependent. We conclude that the microscopic aging dynamics is
surprisingly similar for fragile and strong glass formers.Comment: 4 pages, 7 figure
Pressure inequalities for nuclear and neutron matter
We prove several inequalities using lowest-order effective field theory for
nucleons which give an upper bound on the pressure of asymmetric nuclear matter
and neutron matter. We prove two types of inequalities, one based on convexity
and another derived from shifting an auxiliary field.Comment: 16 pages, published journal version - includes inequalities for spin
polarized system
- …