9 research outputs found

    Relational Self-Supervised Learning on Graphs

    Full text link
    Over the past few years, graph representation learning (GRL) has been a powerful strategy for analyzing graph-structured data. Recently, GRL methods have shown promising results by adopting self-supervised learning methods developed for learning representations of images. Despite their success, existing GRL methods tend to overlook an inherent distinction between images and graphs, i.e., images are assumed to be independently and identically distributed, whereas graphs exhibit relational information among data instances, i.e., nodes. To fully benefit from the relational information inherent in the graph-structured data, we propose a novel GRL method, called RGRL, that learns from the relational information generated from the graph itself. RGRL learns node representations such that the relationship among nodes is invariant to augmentations, i.e., augmentation-invariant relationship, which allows the node representations to vary as long as the relationship among the nodes is preserved. By considering the relationship among nodes in both global and local perspectives, RGRL overcomes limitations of previous contrastive and non-contrastive methods, and achieves the best of both worlds. Extensive experiments on fourteen benchmark datasets over various downstream tasks demonstrate the superiority of RGRL over state-of-the-art baselines. The source code for RGRL is available at https://github.com/Namkyeong/RGRL.Comment: CIKM 202

    Heterogeneous Graph Learning for Multi-modal Medical Data Analysis

    Full text link
    Routine clinical visits of a patient produce not only image data, but also non-image data containing clinical information regarding the patient, i.e., medical data is multi-modal in nature. Such heterogeneous modalities offer different and complementary perspectives on the same patient, resulting in more accurate clinical decisions when they are properly combined. However, despite its significance, how to effectively fuse the multi-modal medical data into a unified framework has received relatively little attention. In this paper, we propose an effective graph-based framework called HetMed (Heterogeneous Graph Learning for Multi-modal Medical Data Analysis) for fusing the multi-modal medical data. Specifically, we construct a multiplex network that incorporates multiple types of non-image features of patients to capture the complex relationship between patients in a systematic way, which leads to more accurate clinical decisions. Extensive experiments on various real-world datasets demonstrate the superiority and practicality of HetMed. The source code for HetMed is available at https://github.com/Sein-Kim/Multimodal-Medical.Comment: AAAI 202

    Task Relation-aware Continual User Representation Learning

    Full text link
    User modeling, which learns to represent users into a low-dimensional representation space based on their past behaviors, got a surge of interest from the industry for providing personalized services to users. Previous efforts in user modeling mainly focus on learning a task-specific user representation that is designed for a single task. However, since learning task-specific user representations for every task is infeasible, recent studies introduce the concept of universal user representation, which is a more generalized representation of a user that is relevant to a variety of tasks. Despite their effectiveness, existing approaches for learning universal user representations are impractical in real-world applications due to the data requirement, catastrophic forgetting and the limited learning capability for continually added tasks. In this paper, we propose a novel continual user representation learning method, called TERACON, whose learning capability is not limited as the number of learned tasks increases while capturing the relationship between the tasks. The main idea is to introduce an embedding for each task, i.e., task embedding, which is utilized to generate task-specific soft masks that not only allow the entire model parameters to be updated until the end of training sequence, but also facilitate the relationship between the tasks to be captured. Moreover, we introduce a novel knowledge retention module with pseudo-labeling strategy that successfully alleviates the long-standing problem of continual learning, i.e., catastrophic forgetting. Extensive experiments on public and proprietary real-world datasets demonstrate the superiority and practicality of TERACON. Our code is available at https://github.com/Sein-Kim/TERACON.Comment: KDD 202

    Conditional Graph Information Bottleneck for Molecular Relational Learning

    Full text link
    Molecular relational learning, whose goal is to learn the interaction behavior between molecular pairs, got a surge of interest in molecular sciences due to its wide range of applications. Recently, graph neural networks have recently shown great success in molecular relational learning by modeling a molecule as a graph structure, and considering atom-level interactions between two molecules. Despite their success, existing molecular relational learning methods tend to overlook the nature of chemistry, i.e., a chemical compound is composed of multiple substructures such as functional groups that cause distinctive chemical reactions. In this work, we propose a novel relational learning framework, called CGIB, that predicts the interaction behavior between a pair of graphs by detecting core subgraphs therein. The main idea is, given a pair of graphs, to find a subgraph from a graph that contains the minimal sufficient information regarding the task at hand conditioned on the paired graph based on the principle of conditional graph information bottleneck. We argue that our proposed method mimics the nature of chemical reactions, i.e., the core substructure of a molecule varies depending on which other molecule it interacts with. Extensive experiments on various tasks with real-world datasets demonstrate the superiority of CGIB over state-of-the-art baselines. Our code is available at https://github.com/Namkyeong/CGIB.Comment: ICML 202

    Shift-Robust Molecular Relational Learning with Causal Substructure

    Full text link
    Recently, molecular relational learning, whose goal is to predict the interaction behavior between molecular pairs, got a surge of interest in molecular sciences due to its wide range of applications. In this work, we propose CMRL that is robust to the distributional shift in molecular relational learning by detecting the core substructure that is causally related to chemical reactions. To do so, we first assume a causal relationship based on the domain knowledge of molecular sciences and construct a structural causal model (SCM) that reveals the relationship between variables. Based on the SCM, we introduce a novel conditional intervention framework whose intervention is conditioned on the paired molecule. With the conditional intervention framework, our model successfully learns from the causal substructure and alleviates the confounding effect of shortcut substructures that are spuriously correlated to chemical reactions. Extensive experiments on various tasks with real-world and synthetic datasets demonstrate the superiority of CMRL over state-of-the-art baseline models. Our code is available at https://github.com/Namkyeong/CMRL.Comment: KDD 202

    Predicting Density of States via Multi-modal Transformer

    Full text link
    The density of states (DOS) is a spectral property of materials, which provides fundamental insights on various characteristics of materials. In this paper, we propose a model to predict the DOS by reflecting the nature of DOS: DOS determines the general distribution of states as a function of energy. Specifically, we integrate the heterogeneous information obtained from the crystal structure and the energies via multi-modal transformer, thereby modeling the complex relationships between the atoms in the crystal structure, and various energy levels. Extensive experiments on two types of DOS, i.e., Phonon DOS and Electron DOS, with various real-world scenarios demonstrate the superiority of DOSTransformer. The source code for DOSTransformer is available at https://github.com/HeewoongNoh/DOSTransformer.Comment: ICLR 2023 Workshop on Machine Learning for Materials (ML4Materials

    Augmentation-Free Self-Supervised Learning on Graphs

    No full text
    Inspired by the recent success of self-supervised methods applied on images, self-supervised learning on graph structured data has seen rapid growth especially centered on augmentation-based contrastive methods. However, we argue that without carefully designed augmentation techniques, augmentations on graphs may behave arbitrarily in that the underlying semantics of graphs can drastically change. As a consequence, the performance of existing augmentation-based methods is highly dependent on the choice of augmentation scheme, i.e., augmentation hyperparameters and combinations of augmentation. In this paper, we propose a novel augmentation-free self-supervised learning framework for graphs, named AFGRL. Specifically, we generate an alternative view of a graph by discovering nodes that share the local structural information and the global semantics with the graph. Extensive experiments towards various node-level tasks, i.e., node classification, clustering, and similarity search on various real-world datasets demonstrate the superiority of AFGRL. The source code for AFGRL is available at https://github.com/Namkyeong/AFGRL

    Maximal Differentiability for a General Class of Quasilinear Elliptic Equations with Right-hand Side Measures

    No full text
    Byun S-S, Cho N, Lee H-S. Maximal Differentiability for a General Class of Quasilinear Elliptic Equations with Right-hand Side Measures. International Mathematics Research Notices. 2022;2022(13):9722-9754.**Abstract** We prove maximal differentiability for the gradient of solutions to a certain type of nonlinear elliptic equations with a measure on the right-hand side. Our results generalize the limiting case of Calderón–Zygmund theory for an elliptic equation with pp-growth to the case of Orlicz growth
    corecore