6,928 research outputs found
Variability in antifungal and antiviral use in hospitalized children
We analyzed antifungal and antiviral prescribing among high-risk children across freestanding children’s hospitals. Antifungal and antiviral days of therapy varied across hospitals. Benchmarking antifungal and antiviral use and developing antimicrobial stewardship strategies to optimize use of these high cost agents is needed.Infect Control Hosp Epidemiol2017;38:743–746</jats:p
The AGN Luminosity Fraction in Merging Galaxies
Galaxy mergers are key events in galaxy evolution, often causing massive
starbursts and fueling active galactic nuclei (AGN). In these highly dynamic
systems, it is not yet precisely known how much starbursts and AGN respectively
contribute to the total luminosity, at what interaction stages they occur, and
how long they persist. Here we estimate the fraction of the bolometric infrared
(IR) luminosity that can be attributed to AGN by measuring and modeling the
full ultraviolet to far-infrared spectral energy distributions (SEDs) in up to
33 broad bands for 24 merging galaxies with the Code for Investigating Galaxy
Emission. In addition to a sample of 12 confirmed AGN in late-stage mergers,
found in the Revised Bright Galaxy Sample or
Faint Source Catalog, our sample includes a comparison sample of 12 galaxy
mergers from the Interacting Galaxies Survey, mostly early-stage. We
perform identical SED modeling of simulated mergers to validate our methods,
and we supplement the SED data with mid-IR spectra of diagnostic lines obtained
with InfraRed Spectrograph. The estimated AGN contributions to the IR
luminosities vary from system to system from 0% up to 91% but are significantly
greater in the later-stage, more luminous mergers, consistent with what is
known about galaxy evolution and AGN triggering.Comment: 26 pages, 10 figure
Chemical mass transport between fluid fine tailings and the overlying water cover of an oil sands end pit lake
NSERC Grant No. CRDPJ 476388;
NSERC Grant No. IRCPJ 428588–11Peer ReviewedFluid fine tailings (FFT) are a principal by-product of the bitumen extraction process at oil sands
mines. Base Mine Lake (BML)—the first full-scale demonstration oil sands end pit lake (EPL)—contains approximately 1.9 3 108 m^3 of FFT stored under a water cover within a decommissioned mine pit. Chemical mass transfer from the FFT to the water cover can occur via two key processes: (1) advection-dispersion driven by tailings settlement; and (2) FFT disturbance due to fluid movement in the water cover. Dissolved chloride (Cl) was used to evaluate the water cover mass balance and to track mass transport within the underlying FFT based on field sampling and numerical modeling. Results indicated that FFT was the dominant Cl source to the water cover and that the FFT is exhibiting a transient advection-dispersion mass transport regime with intermittent disturbance near the FFT-water interface. The advective pore water flux was estimated by the mass balance to be 0.002 m^3 m^-2 d^-1, which represents 0.73 m of FFT settlement per year. However, the FFT pore water Cl concentrations and corresponding mass transport simulations indicated that advection rates and disturbance depths vary between sample locations. The disturbance depth was estimated to vary with location between 0.75 and 0.95 m. This investigation provides valuable insight for assessing the geochemical evolution of the water cover and performance of EPLs as an oil sands reclamation strategy
Prevalence of prediabetes and undiagnosed diabetes in patients with HFpEF and HFrEF and associated clinical outcomes
Purpose:
The prevalence and consequences of prediabetic dysglycemia and undiagnosed diabetes is unknown in patients with heart failure (HF) and preserved ejection fraction (HFpEF) and has not been compared to heart failure and reduced ejection fraction (HFrEF).
Methods:
We examined the prevalence and outcomes associated with normoglycemia, prediabetic dysglycemia and diabetes (diagnosed and undiagnosed) among individuals with a baseline glycated hemoglobin (hemoglobin A1c, HbA1c) measurement stratified by HFrEF or HFpEF in the Candesartan in Heart failure Assessment of Reduction in Mortality and morbidity programme (CHARM). We studied the primary outcome of HF hospitalization or cardiovascular (CV) death, and all-cause death, and estimated hazard ratios (HR) by use of multivariable Cox regression models.
Results:
HbA1c was measured at baseline in CHARM patients enrolled in the USA and Canada and was available in 1072/3023 (35%) of patients with HFpEF and 1578/4576 (34%) patients with HFrEF. 18 and 16% had normoglycemia (HbA1c < 6.0), 20 and 22% had prediabetes (HbA1c 6.0–6.4), respectively. Finally among patients with HFpEF 22% had undiagnosed diabetes (HbA1c > 6.4), and 40% had known diabetes (any HbA1c), with corresponding prevalence among HFrEF patients being 26 and 35%. The rates of both clinical outcomes of interest were higher in patients with undiagnosed diabetes and prediabetes, compared to normoglycemic patients, irrespective of HF subtype, and in general higher among HFrEF patients. For the primary composite outcome among HFpEF patients, the HRs were 1.02 (95% CI 0.63–1.65) for prediabetes, HR 1.18 (0.75–1.86) for undiagnosed diabetes and 2.75 (1.83–4.11) for known diabetes, respectively, p value for trend across groups < 0.001. Dysglycemia was also associated with worse outcomes in HFrEF.
Conclusions:
These findings confirm the remarkably high prevalence of dysglycemia in heart failure irrespective of ejection fraction phenotype, and demonstrate that dysglycemia is associated with a higher risk of adverse clinical outcomes, even before the diagnosis of diabetes and institution of glucose lowering therapy in patients with HFpEF as well as HFrEF
Persistence and Quiescence of Seismicity on Fault Systems
We study the statistics of simulated earthquakes in a quasistatic model of
two parallel heterogeneous faults within a slowly driven elastic tectonic
plate. The probability that one fault remains dormant while the other is active
for a time Dt following the previous activity shift is proportional to the
inverse of Dt to the power 1+x, a result that is robust in the presence of
annealed noise and strength weakening. A mean field theory accounts for the
observed dependence of the persistence exponent x as a function of
heterogeneity and distance between faults. These results continue to hold if
the number of competing faults is increased. This is related to the persistence
phenomenon discovered in a large variety of systems, which specifies how long a
relaxing dynamical system remains in a neighborhood of its initial
configuration. Our persistence exponent is found to vary as a function of
heterogeneity and distance between faults, thus defining a novel universality
class.Comment: 4 pages, 3 figures, Revte
Quasiparticle density of states in dirty high-T_c superconductors
We study the density of quasiparticle states of dirty d-wave superconductors.
We show the existence of singular corrections to the density of states due to
quantum interference effects. We then argue that the density of states actually
vanishes in the localized phase as or depending on whether time
reversal is a good symmetry or not. We verify this result for systems without
time reversal symmetry in one dimension using supersymmetry techniques. This
simple, instructive calculation also provides the exact universal scaling
function for the density of states for the crossover from ballistic to
localized behaviour in one dimension. Above two dimensions, we argue that in
contrast to the conventional Anderson localization transition, the density of
states has critical singularities which we calculate in a
expansion. We discuss consequences of our results for various experiments on
dirty high- materials
Detecting fractions of electrons in the high- cuprates
We propose several tests of the idea that the electron is fractionalized in
the underdoped and undoped cuprates. These include the ac Josephson effect, and
tunneling into small superconducting grains in the Coulomb blockade regime. In
both cases, we argue that the results are qualitatively modified from the
conventional ones if the insulating tunnel barrier is fractionalized. These
experiments directly detect the possible existence of the chargon - a charge
spinless boson - in the insulator. The effects described in this paper
provide a means to probing whether the undoped cuprate (despite it's magnetism)
is fractionalized. Thus, the experiments discussed here are complementary to
the flux-trapping experiment we proposed in our earlier work(cond-mat/0006481).Comment: 7 pages, 5 figure
Fractionalization, topological order, and cuprate superconductivity
This paper is concerned with the idea that the electron is fractionalized in
the cuprate high- materials. We show how the notion of topological order
may be used to develop a precise theoretical characterization of a
fractionalized phase in spatial dimension higher than one. Apart from the
fractional particles into which the electron breaks apart, there are
non-trivial gapped topological excitations - dubbed "visons". A cylindrical
sample that is fractionalized exhibits two disconnected topological sectors
depending on whether a vison is trapped in the "hole" or not. Indeed, "vison
expulsion" is to fractionalization what the Meissner effect ("flux expulsion")
is to superconductivity. This understanding enables us to address a number of
conceptual issues that need to be confronted by any theory of the cuprates
based on fractionalization ideas. We argue that whether or not the electron
fractionalizes in the cuprates is a sharp and well-posed question with a
definite answer. We elaborate on our recent proposal for an experiment to
unambiguously settle this issue.Comment: 18 pages, 7 figure
The Evolution of the Galaxy Stellar Mass Function at z= 4-8: A Steepening Low-mass-end Slope with Increasing Redshift
We present galaxy stellar mass functions (GSMFs) at 4-8 from a
rest-frame ultraviolet (UV) selected sample of 4500 galaxies, found via
photometric redshifts over an area of 280 arcmin in the CANDELS/GOODS
fields and the Hubble Ultra Deep Field. The deepest Spitzer/IRAC data
yet-to-date and the relatively large volume allow us to place a better
constraint at both the low- and high-mass ends of the GSMFs compared to
previous space-based studies from pre-CANDELS observations. Supplemented by a
stacking analysis, we find a linear correlation between the rest-frame UV
absolute magnitude at 1500 \AA\ () and logarithmic stellar mass
() that holds for galaxies with . We
use simulations to validate our method of measuring the slope of the - relation, finding that the bias is minimized with a hybrid
technique combining photometry of individual bright galaxies with stacked
photometry for faint galaxies. The resultant measured slopes do not
significantly evolve over 4-8, while the normalization of the trend
exhibits a weak evolution toward lower masses at higher redshift. We combine
the - distribution with observed rest-frame UV luminosity
functions at each redshift to derive the GSMFs, finding that the low-mass-end
slope becomes steeper with increasing redshift from
at to at
. The inferred stellar mass density, when integrated over
-, increases by a factor of
between and and is in good agreement with the time integral of the
cosmic star formation rate density.Comment: 27 pages, 17 figures, ApJ, in pres
- …