47,730 research outputs found

    Particles accelerated by shocks in the heliosphere

    Get PDF
    The populations of energetic ions accelerated by shocks in the heliosphere are reviewed briefly. Characteristic spectra and representative fluxes are given

    Energy dissipation and ion heating at the heliospheric termination shock

    Get PDF
    The Los Alamos hybrid simulation code is used to examine heating and the partition of dissipation energy at the perpendicular heliospheric termination shock in the presence of pickup ions. The simulations are one-dimensional in space but three-dimensional in field and velocity components, and are carried out for a range of values of pickup ion relative density. Results from the simulations show that because the solar wind ions are relatively cold upstream, the temperature of these ions is raised by a relatively larger factor than the temperature of the pickup ions. An analytic model for energy partition is developed on the basis of the Rankine-Hugoniot relations and a polytropic energy equation. The polytropic index gamma used in the Rankine-Hugoniot relations is varied to improve agreement between the model and the simulations concerning the fraction of downstream heating in the pickup ions as well as the compression ratio at the shock. When the pickup ion density is less than 20%, the polytropic index is about 5/3, whereas for pickup ion densities greater than 20%, the polytropic index tends toward 2.2, suggesting a fundamental change in the character of the shock, as seen in the simulations, when the pickup ion density is large. The model and the simulations both indicate for the upstream parameters chosen for Voyager 2 conditions that the pickup ion density is about 25% and the pickup ions gain the larger share ( approximately 90%) of the downstream thermal pressure, consistent with Voyager 2 observations near the shock

    A 100-MIPS GaAs asynchronous microprocessor

    Get PDF
    The authors describe how they ported an asynchronous microprocessor previously implemented in CMOS to gallium arsenide, using a technology-independent asynchronous design technique. They introduce new circuits including a sense-amplifier, a completion detection circuit, and a general circuit structure for operators specified by production rules. The authors used and tested these circuits in a variety of designs

    Stem cell mechanobiology

    No full text
    Stem cells are undifferentiated cells that are capable of proliferation, self-maintenance and differentiation towards specific cell phenotypes. These processes are controlled by a variety of cues including physicochemical factors associated with the specific mechanical environment in which the cells reside. The control of stem cell biology through mechanical factors remains poorly understood and is the focus of the developing field of mechanobiology. This review provides an insight into the current knowledge of the role of mechanical forces in the induction of differentiation of stem cells. While the details associated with individual studies are complex and typically associated with the stem cell type studied and model system adopted, certain key themes emerge. First, the differentiation process affects the mechanical properties of the cells and of specific subcellular components. Secondly, that stem cells are able to detect and respond to alterations in the stiffness of their surrounding microenvironment via induction of lineage-specific differentiation. Finally, the application of external mechanical forces to stem cells, transduced through a variety of mechanisms, can initiate and drive differentiation processes. The coalescence of these three key concepts permit the introduction of a new theory for the maintenance of stem cells and alternatively their differentiation via the concept of a stem cell 'mechano-niche', defined as a specific combination of cell mechanical properties, extracellular matrix stiffness and external mechanical cues conducive to the maintenance of the stem cell population.<br/

    Relativistic Coulomb Green's function in dd-dimensions

    Full text link
    Using the operator method, the Green's functions of the Dirac and Klein-Gordon equations in the Coulomb potential Zα/r-Z\alpha/r are derived for the arbitrary space dimensionality dd. Nonrelativistic and quasiclassical asymptotics of these Green's functions are considered in detail.Comment: 9 page

    Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions

    Get PDF
    The selective liquid phase hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on SiO₂, ZnO, γ-Al2O₃, CeO₂ is reported under extremely mild conditions. Ambient hydrogen pressure, and temperatures as low as 50 °C are shown sufficient to drive furfural hydrogenation with high conversion and >99% selectivity to furfuryl alcohol. Strong support and solvent dependencies are observed, with methanol and n-butanol proving excellent solvents for promoting high furfuryl alcohol yields over uniformly dispersed 4 nm Pt nanoparticles over MgO, CeO₂ and γ-Al₂O₃. In contrast, non-polar solvents conferred poor furfural conversion, while ethanol favored acetal by-product formation. Furfural selective hydrogenation can be tuned through controlling the oxide support, reaction solvent and temperature

    Comparison of the color-evaporation model and the NRQCD factorization approach in charmonium production

    Full text link
    We compare the color-evaporation model (CEM) and nonrelativistic QCD (NRQCD) factorization predictions for inclusive quarkonium production. Using the NRQCD factorization formulas for quarkonium production and for perturbative QQ-bar production, we deduce relationships that are implied by the CEM between the nonperturbative NRQCD matrix elements that appear in the factorization formula for quarkonium production. These relationships are at odds with the phenomenological values of the matrix elements that have been extracted from the Tevatron data for charmonium production at large transverse momentum. A direct comparison of the CEM and NRQCD factorization predictions with the CDF charmonium production data reveals that the CEM fits to the data are generally unsatisfactory, while the NRQCD factorization fits are generally compatible with the data. The inclusion of k_T smearing improves the CEM fits substantially, but significant incompatibilities remain. The NRQCD factorization fits to the chi_c data indicate that multiple gluon radiation is an essential ingredient in obtaining the correct shape of the cross section as a function of p_T.Comment: 26 pages, 6 figures, 7 tables, Some changes of emphasis in the conclusions, additional discussion of theoretical uncertainties, minor revisions and corrections, version to be published in Physical Review
    corecore