10,297 research outputs found

    Magnetoelectric Coupling and Electric Control of Magnetization in Ferromagnet-Ferroelectric-Metal Superlattices

    Full text link
    Ferromagnet-ferroelectric-metal superlattices are proposed to realize the large room-temperature magnetoelectric effect. Spin dependent electron screening is the fundamental mechanism at the microscopic level. We also predict an electric control of magnetization in this structure. The naturally broken inversion symmetry in our tri-component structure introduces a magnetoelectric coupling energy of PM2P M^2. Such a magnetoelectric coupling effect is general in ferromagnet-ferroelectric heterostructures, independent of particular chemical or physical bonding, and will play an important role in the field of multiferroics.Comment: 5 pages including 3 figures and 1 tabl

    Stable interaction-induced Anderson-like localization embedded in standing waves

    Full text link
    We uncover the interaction-induced \emph{stable self-localization} of bosons in disorder-free superlattices. In these nonthermalized multi-particle states, one of the particles forms a superposition of multiple standing waves, so that it provides a quasirandom potential to localize the other particles. We derive effective Hamiltonians for self-localized states and find their energy level spacings obeying the Poisson statistics for Anderson-like localization. Surprisingly, we find that the correlated self-localization can be solely induced by interaction in the well-studied nonintegrable Bose-Hubbard models, which has been overlooked for a long time. We propose a dynamical scheme to detect self-localization, where long-time quantum walks of a single particle form a superposition of multiple standing waves for trapping the subsequently loaded particles. Our work provides an experimentally feasible way to realize stable Anderson-like localization in translation-invariant disorder-free systems

    Numerical and physical simulation of rapid microstructural evolution of gas atomised Ni superalloy powders

    Get PDF
    The rapid microstructural evolution of gas atomised Ni superalloy powder compacts over timescales of a few seconds was studied using a Gleeble 3500 thermomechanical simulator, finite element based numerical model and electron microscopy. The study found that the microstructural changes were governed by the characteristic temperatures of the alloy. At a temperature below the γ' solvus, the powders maintained dendritic structures. Above the γ' solvus temperature but in the solid-state, rapid grain spheroidisation and coarsening occurred, although the fine-scale microstructures were largely retained. Once the incipient melting temperature of the alloy was exceeded, microstructural change was rapid, and when the temperature was increased into the solid + liquid state, the powder compact partially melted and then re-solidified with no trace of the original structures, despite the fast timescales. The study reveals the relationship between short, severe thermal excursions and microstructural evolution in powder processed components, and gives guidance on the upper limit of temperature and time for powder-based processes if desirable fine-scale features of powders are to be preserved

    Short-circuit fault analysis and isolation strategy for matrix converters

    Get PDF
    The behavior of matrix converter (MC) drive systems under the condition of MC short-circuit faults is comprehensively investigated. Two isolation strategies using semiconductors and high speed fuses (HSFs) for MC short-circuit faults are examined and their performances are compared. The behavior of MC drive systems during the fuse action time under different operating conditions is explored. The feasibility of fault-tolerant operation during the fuse action time is also studied. The basic selection laws for the HSFs and the requirements for the passive components of the MC drive system from the point view of short-circuit faults are also discussed. Simulation results are used to demonstrate the feasibility of the proposed isolation strategies

    Risk factors for pulmonary tuberculosis in patients with chronic obstructive airway disease in Taiwan: a nationwide cohort study

    Get PDF
    BACKGROUND: An association between chronic obstructive pulmonary disease (COPD) and tuberculosis (TB) has been described, mainly due to smoking and corticosteroid use. Whether inhaled corticosteroid (ICS) therapy is associated with an increased risk of TB remains unclear. METHODS: We selected COPD cases by using six diagnostic scenarios and control subjects from a nationwide health insurance database, and applied time-dependent Cox regression analysis to identify the risk factors for TB. RESULTS: Among 1,000,000 beneficiaries, 23,594 COPD cases and 47,188 non-COPD control subjects were selected. Cox regression analysis revealed that age, male gender, diabetes mellitus, end-stage renal disease, and cirrhosis, as well as COPD (hazard ratio = 2.468 [2.205–2.762]) were independent risk factors for TB. Among the COPD cases, those who developed TB received more oral corticosteroids and oral β-agonists. Time-dependent Cox regression analysis revealed that age, male gender, diabetes mellitus, low income, oral corticosteroid dose, and oral β-agonist dose, but not ICS dose, were independent risk factors for TB. The identified risk factors and their hazard ratios were similar among the COPD cases selected using different scenarios. CONCLUSION: Keeping a high suspicion and regularly monitoring for the development of pulmonary TB in COPD patients are necessary, especially for those receiving higher doses of oral corticosteroids and other COPD medications. Although ICS therapy has been shown to predispose COPD patients to pneumonia in large randomized clinical trials, it does not increase the risk of TB in real world practice

    Effects of dietary forage-to-concentrate ratio on nutrient digestibility and enteric methane production in growing goats () and Sika deer ()

    Get PDF
    Objective Two experiments were conducted to determine the effects of forage-to-concentrate (F:C) ratio on the nutrient digestibility and enteric methane (CH4) emission in growing goats and Sika deer. Methods Three male growing goats (body weight [BW] = 19.0±0.7 kg) and three male growing deer (BW = 19.3±1.2 kg) were respectively allotted to a 3×3 Latin square design with an adaptation period of 7 d and a data collection period of 3 d. Respiration-metabolism chambers were used for measuring the enteric CH4 emission. Treatments of low (25:75), moderate (50:50), and high (73:27) F:C ratios were given to both goats and Sika deer. Results Dry matter (DM) and organic matter (OM) digestibility decreased linearly with increasing F:C ratio in both goats and Sika deer. In both goats and Sika deer, the CH4 emissions expressed as g/d, g/kg BW0.75, % of gross energy intake, g/kg DM intake (DMI), and g/kg OM intake (OMI) decreased linearly as the F:C ratio increased, however, the CH4 emissions expressed as g/kg digested DMI and OMI were not affected by the F:C ratio. Eight equations were derived for predicting the enteric CH4 emission from goats and Sika deer. For goat, equation 1 was found to be of the highest accuracy: CH4 (g/d) = 3.36+4.71×DMI (kg/d)−0.0036×neutral detergent fiber concentrate (NDFC, g/kg)+0.01563×dry matter digestibility (DMD, g/kg)−0.0108×neutral detergent fiber digestibility (NDFD, g/kg). For Sika deer, equation 5 was found to be of the highest accuracy: CH4 (g/d) = 66.3+27.7×DMI (kg/d)−5.91×NDFC (g/kg)−7.11× DMD (g/kg)+0.0809×NDFD (g/kg). Conclusion Digested nutrient intake could be considered when determining the CH4 generation factor in goats and Sika deer. Finally, the enteric CH4 prediction model for goats and Sika deer were estimated
    • …
    corecore