1,818 research outputs found

    Deficiency of Capicua disrupts bile acid homeostasis

    Get PDF
    Capicua (CIC) has been implicated in pathogenesis of spinocerebellar ataxia type 1 and cancer in mammals; however, the in vivo physiological functions of CIC remain largely unknown. Here we show that Cic hypomorphic (Cic-L-/-) mice have impaired bile acid (BA) homeostasis associated with induction of proinflammatory cytokines. We discovered that several drug metabolism and BA transporter genes were down-regulated in Cic-L-/- liver, and that BA was increased in the liver and serum whereas bile was decreased within the gallbladder of Cic-L-/- mice. We also found that levels of proinflammatory cytokine genes were up-regulated in Cic-L-/- liver. Consistent with this finding, levels of hepatic transcriptional regulators, such as hepatic nuclear factor 1 alpha (HNF1 alpha), CCAAT/enhancer-binding protein beta (C/EBP beta), forkhead box protein A2 (FOXA2), and retinoid X receptor alpha (RXR alpha), were markedly decreased in Cic-L-/- mice. Moreover, induction of tumor necrosis factor alpha (Tnf alpha) expression and decrease in the levels of FOXA2, C/EBP beta, and RXRa were found in Cic-L-/- liver before BA was accumulated, suggesting that inflammation might be the cause for the cholestasis in Cic-L-/- mice. Our findings indicate that CIC is a critical regulator of BA homeostasis, and that its dysfunction might be associated with chronic liver disease and metabolic disorders.open11810Ysciescopu

    Cosmological constraints from Gauss-Bonnet braneworld with large-field potentials

    Full text link
    We calculate the spectral index and tensor-to-scalar ratio for patch inflation defined by H2β‰ˆΞ²q2VqH^2\approx \beta^2_q V^q and Ο•Λ™β‰ˆβˆ’Vβ€²/3H\dot{\phi}\approx -V'/3H, using the slow-roll expansion. The patch cosmology arisen from the Gauss-Bonnet braneworld consists of Gauss-Bonnet (GB), Randall-Sundrum (RS), and 4D general relativistic (GR) cosmological models. In this work, we choose large-field potentials of V=V0Ο•pV=V_0\phi^p to compare with the observational data. Since second-order corrections are rather small in the slow-roll limit, the leading-order calculation is sufficient to compare with the data. Finally, we show that it is easier to discriminate between quadratic potential and quartic potential in the GB cosmological model rather than the GR or RS cosmological models.Comment: 13 pages, title changed, version to appear in JCA

    Genome-Wide Association Study on Longitudinal Change in Fasting Plasma Glucose in Korean Population

    Get PDF
    Background Genome-wide association studies (GWAS) on type 2 diabetes mellitus (T2DM) have identified more than 400 distinct genetic loci associated with diabetes and nearly 120 loci for fasting plasma glucose (FPG) and fasting insulin level to date. However, genetic risk factors for the longitudinal deterioration of FPG have not been thoroughly evaluated. We aimed to identify genetic variants associated with longitudinal change of FPG over time. Methods We used two prospective cohorts in Korean population, which included a total of 10,528 individuals without T2DM. GWAS of repeated measure of FPG using linear mixed model was performed to investigate the interaction of genetic variants and time, and meta-analysis was conducted. Genome-wide complex trait analysis was used for heritability calculation. In addition, expression quantitative trait loci (eQTL) analysis was performed using the Genotype-Tissue Expression project. Results A small portion (4%) of the genome-wide single nucleotide polymorphism (SNP) interaction with time explained the total phenotypic variance of longitudinal change in FPG. A total of four known genetic variants of FPG were associated with repeated measure of FPG levels. One SNP (rs11187850) showed a genome-wide significant association for genetic interaction with time. The variant is an eQTL for NOC3 like DNA replication regulator (NOC3L) gene in pancreas and adipose tissue. Furthermore, NOC3L is also differentially expressed in pancreatic Ξ²-cells between subjects with or without T2DM. However, this variant was not associated with increased risk of T2DM nor elevated FPG level. Conclusion We identified rs11187850, which is an eQTL of NOC3L, to be associated with longitudinal change of FPG in Korean population

    Implication of Genetic Variants Near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in Type 2 Diabetes and Obesity in 6,719 Asians

    Get PDF
    OBJECTIVEβ€” Recent genome-wide association studies have identified six novel genes for type 2 diabetes and obesity and confirmed TCF7L2 as the major type 2 diabetes gene to date in Europeans. However, the implications of these genes in Asians are unclear

    Chronic Exposure to the Herbicide, Atrazine, Causes Mitochondrial Dysfunction and Insulin Resistance

    Get PDF
    There is an apparent overlap between areas in the USA where the herbicide, atrazine (ATZ), is heavily used and obesity-prevalence maps of people with a BMI over 30. Given that herbicides act on photosystem II of the thylakoid membrane of chloroplasts, which have a functional structure similar to mitochondria, we investigated whether chronic exposure to low concentrations of ATZ might cause obesity or insulin resistance by damaging mitochondrial function. Sprague-Dawley rats (nβ€Š=β€Š48) were treated for 5 months with low concentrations (30 or 300 Β΅g kgβˆ’1 dayβˆ’1) of ATZ provided in drinking water. One group of animals was fed a regular diet for the entire period, and another group of animals was fed a high-fat diet (40% fat) for 2 months after 3 months of regular diet. Various parameters of insulin resistance were measured. Morphology and functional activities of mitochondria were evaluated in tissues of ATZ-exposed animals and in isolated mitochondria. Chronic administration of ATZ decreased basal metabolic rate, and increased body weight, intra-abdominal fat and insulin resistance without changing food intake or physical activity level. A high-fat diet further exacerbated insulin resistance and obesity. Mitochondria in skeletal muscle and liver of ATZ-treated rats were swollen with disrupted cristae. ATZ blocked the activities of oxidative phosphorylation complexes I and III, resulting in decreased oxygen consumption. It also suppressed the insulin-mediated phosphorylation of Akt. These results suggest that long-term exposure to the herbicide ATZ might contribute to the development of insulin resistance and obesity, particularly where a high-fat diet is prevalent

    Gene Expression Pattern in Transmitochondrial Cytoplasmic Hybrid Cells Harboring Type 2 Diabetes-Associated Mitochondrial DNA Haplogroups

    Get PDF
    Decreased mitochondrial function plays a pivotal role in the pathogenesis of type 2 diabetes mellitus (T2DM). Recently, it was reported that mitochondrial DNA (mtDNA) haplogroups confer genetic susceptibility to T2DM in Koreans and Japanese. Particularly, mtDNA haplogroup N9a is associated with a decreased risk of T2DM, whereas haplogroups D5 and F are associated with an increased risk. To examine functional consequences of these haplogroups without being confounded by the heterogeneous nuclear genomic backgrounds of different subjects, we constructed transmitochondrial cytoplasmic hybrid (cybrid) cells harboring each of the three haplogroups (N9a, D5, and F) in a background of a shared nuclear genome. We compared the functional consequences of the three haplogroups using cell-based assays and gene expression microarrays. Cell-based assays did not detect differences in mitochondrial functions among the haplogroups in terms of ATP generation, reactive oxygen species production, mitochondrial membrane potential, and cellular dehydrogenase activity. However, differential expression and clustering analyses of microarray data revealed that the three haplogroups exhibit a distinctive nuclear gene expression pattern that correlates with their susceptibility to T2DM. Pathway analysis of microarray data identified several differentially regulated metabolic pathways. Notably, compared to the T2DM-resistant haplogroup N9a, the T2DM-susceptible haplogroup F showed down-regulation of oxidative phosphorylation and up-regulation of glycolysis. These results suggest that variations in mtDNA can affect the expression of nuclear genes regulating mitochondrial functions or cellular energetics. Given that impaired mitochondrial function caused by T2DM-associated mtDNA haplogroups is compensated by the nuclear genome, we speculate that defective nuclear compensation, under certain circumstances, might lead to the development of T2DM

    Internal Ribosomal Entry Site-Mediated Translation Is Important for Rhythmic PERIOD1 Expression

    Get PDF
    The mouse PERIOD1 (mPER1) plays an important role in the maintenance of circadian rhythm. Translation of mPer1 is directed by both a cap-dependent process and cap-independent translation mediated by an internal ribosomal entry site (IRES) in the 5β€² untranslated region (UTR). Here, we compared mPer1 IRES activity with other cellular IRESs. We also found critical region in mPer1 5β€²UTR for heterogeneous nuclear ribonucleoprotein Q (HNRNPQ) binding. Deletion of HNRNPQ binding region markedly decreased IRES activity and disrupted rhythmicity. A mathematical model also suggests that rhythmic IRES-dependent translation is a key process in mPER1 oscillation. The IRES-mediated translation of mPer1 will help define the post-transcriptional regulation of the core clock genes

    Outer Membrane Vesicles Derived from Escherichia coli Induce Systemic Inflammatory Response Syndrome

    Get PDF
    Sepsis, characterized by a systemic inflammatory state that is usually related to Gram-negative bacterial infection, is a leading cause of death worldwide. Although the annual incidence of sepsis is still rising, the exact cause of Gram-negative bacteria-associated sepsis is not clear. Outer membrane vesicles (OMVs), constitutively secreted from Gram-negative bacteria, are nano-sized spherical bilayered proteolipids. Using a mouse model, we showed that intraperitoneal injection of OMVs derived from intestinal Escherichia coli induced lethality. Furthermore, OMVs induced host responses which resemble a clinically relevant condition like sepsis that was characterized by piloerection, eye exudates, hypothermia, tachypnea, leukopenia, disseminated intravascular coagulation, dysfunction of the lungs, hypotension, and systemic induction of tumor necrosis factor-Ξ± and interleukin-6. Our study revealed a previously unidentified causative microbial signal in the pathogenesis of sepsis, suggesting OMVs as a new therapeutic target to prevent and/or treat severe sepsis caused by Gram-negative bacterial infection
    • …
    corecore