6,886 research outputs found

    Application of the DRA method to the calculation of the four-loop QED-type tadpoles

    Full text link
    We apply the DRA method to the calculation of the four-loop `QED-type' tadpoles. For arbitrary space-time dimensionality D the results have the form of multiple convergent sums. We use these results to obtain the epsilon-expansion of the integrals around D=3 and D=4.Comment: References added, some typos corrected. Results unchange

    On the energy momentum dispersion in the lattice regularization

    Full text link
    For a free scalar boson field and for U(1) gauge theory finite volume (infrared) and other corrections to the energy-momentum dispersion in the lattice regularization are investigated calculating energy eigenstates from the fall off behavior of two-point correlation functions. For small lattices the squared dispersion energy defined by Edis2=Ek2E024i=1d1sin(ki/2)2E_{\rm dis}^2=E_{\vec{k}}^2-E_0^2-4\sum_{i=1}^{d-1}\sin(k_i/2)^2 is in both cases negative (dd is the Euclidean space-time dimension and EkE_{\vec{k}} the energy of momentum k\vec{k} eigenstates). Observation of Edis2=0E_{\rm dis}^2=0 has been an accepted method to demonstrate the existence of a massless photon (E0=0E_0=0) in 4D lattice gauge theory, which we supplement here by a study of its finite size corrections. A surprise from the lattice regularization of the free field is that infrared corrections do {\it not} eliminate a difference between the groundstate energy E0E_0 and the mass parameter MM of the free scalar lattice action. Instead, the relation E0=cosh1(1+M2/2)E_0=\cosh^{-1} (1+M^2/2) is derived independently of the spatial lattice size.Comment: 9 pages, 2 figures. Parts of the paper have been rewritten and expanded to clarify the result

    Connecting the Holographic and Wilsonian Renormalization Groups

    Full text link
    Inspired by the AdS/CFT correspondence, we develop an explicit formal duality between the planar limit of a d-dimensional gauge theory and a classical field theory in a (d+1)-dimensional anti-de Sitter space. The key ingredient is the identification of fields in AdS with generalized Hubbard-Stratonovich transforms of single-trace couplings of the QFT. We show that the Wilsonian renormalization group flow of these transformed couplings matches the holographic (Hamilton-Jacobi) flow of bulk fields along the radial direction in AdS. This result allows one to outline an AdS/CFT dictionary that does not rely on string theory.Comment: 11 pages, 1 figure; metadata modified in v2; added references and minor changes in v3; v4 as published in JHE

    Serration phenomena occurring during tensile tests of three high-manganese TWinning Induced Plasticity (TWIP) steels

    Get PDF
    In this study, the serration phenomena of two high-Mn TWIP steels and an Al-added TWIP steel were examined by tensile tests, and were explained by the microstructural evolution including formation of localized Portevin-Le Chatelier deformation bands and twins. In stress-strain curves of the high-Mn steels, serrations started in a fine and short shape, and their height and periodic interval increased with increasing strain, whereas the Al-added steel did not show any serrations. According to digital images of strain rate and strain obtained from a vision strain gage system, deformation bands were initially formed at the upper region of the gage section, and moved downward along the tensile loading direction. The time when the band formation started was matched with the time when one serration occurred in the stress-time curve. This serration behavior was generally explained by dynamic strain aging, which was closely related with the formation of deformation bands. (C) The Minerals, Metals & Materials Society and ASM International 2013ope

    In-situ synchrotron characterization of fracture initiation and propagation in shales during indentation

    Get PDF
    The feasibility and advantages of synchrotron imaging have been demonstrated to effectively characterise fracture initiation and propagation in shales during indentation tests. These include 1) fast (minute-scale) and high-resolution (μm-scale) imaging of fracture initiation, 2) concurrent spatial and temporal information (4D) about fracture development, 3) quantification and modelling of shale deformation prior to fracture. Imaging experiments were performed on four shale samples with different laminations and compositions in different orientations, representative of three key variables in shale microstructure. Fracture initiation and propagation were successfully captured in 3D over time, and strain maps were generated using digital volume correlation (DVC). Subsequently, post-experimental fracture geometries were characterized at nano-scale using complementary SEM imaging. Characterisation results highlight the influence of microstructural and anisotropy variations on the mechanical properties of shales. The fractures tend to kink at the interface of two different textures at both macroscale and microscale due to deformation incompatibility. The average composition appears to provide the major control on hardness and fracture initiation load; while the material texture and the orientation of the indentation to bedding combine to control the fracture propagation direction and geometry. This improved understanding of fracture development in shales is potentially significant in the clean energy applications

    Variability in spatial distribution of mineral phases in the Lower Bowland Shale, UK, from the mm- to μm-scale: quantitative characterization and modelling

    Get PDF
    The microstructure of a highly laminated Lower Bowland Shale sample is characterized at the micron-to millimeter scale, to investigate how such characterization can be utilized for microstructure-based modelling of the shale's geomechanical behavior. A mosaic of scanning electron microscope (SEM) back-scattered electron (BSE) images was studied. Mineral and organic content and their anisotropy vary between laminae, with a high variability in fracturing and multi-micrometer aggregates of feldspars, carbonates, quartz and organics. The different microstructural interface types and heterogeneities were located and quantified, demonstrating the microstructural complexity of the Bowland Shale, and defining possible pathways for fracture propagation. A combination of counting-box, dispersion, covariance and 2D mapping approaches were used to determine that the total surface of each lamina is 3 to 11 times larger than the scale of heterogeneities relative to mineral proportion and size. The dispersion approach seems to be the preferential technique for determining the representative elementary area (REA) of phase area fraction for these highly heterogeneous large samples, supported by 2D quantitative mapping of the same parameter. Representative microstructural models were developed using Voronoï tessellation using these characteristic scales. These models encapsulate the microstructural features required to simulate fluid flow through these porous Bowland Shales at the mesoscale

    An Efficient Large-Area Grating Coupler for Surface Plasmon Polaritons

    Full text link
    We report the design, fabrication and characterization of a periodic grating of shallow rectangular grooves in a metallic film with the goal of maximizing the coupling efficiency of an extended plane wave (PW) of visible or near-infrared light into a single surface plasmon polariton (SPP) mode on a flat metal surface. A PW-to-SPP power conversion factor > 45 % is demonstrated at a wavelength of 780 nm, which exceeds by an order of magnitude the experimental performance of SPP grating couplers reported to date at any wavelength. Conversion efficiency is maximized by matching the dissipative SPP losses along the grating surface to the local coupling strength. This critical coupling condition is experimentally achieved by tailoring the groove depth and width using a focused ion beam.Comment: The final publication is available at http://www.springerlink.com. http://dx.doi.org/10.1007/s11468-011-9303-

    Bright single-photon sources in bottom-up tailored nanowires

    Get PDF
    The ability to achieve near-unity light extraction efficiency is necessary for a truly deterministic single photon source. The most promising method to reach such high efficiencies is based on embedding single photon emitters in tapered photonic waveguides defined by top-down etching techniques. However, light extraction efficiencies in current top-down approaches are limited by fabrication imperfections and etching induced defects. The efficiency is further tempered by randomly positioned off-axis quantum emitters. Here, we present perfectly positioned single quantum dots on the axis of a tailored nanowire waveguide using bottom-up growth. In comparison to quantum dots in nanowires without waveguide, we demonstrate a 24-fold enhancement in the single photon flux, corresponding to a light extraction efficiency of 42 %. Such high efficiencies in one-dimensional nanowires are promising to transfer quantum information over large distances between remote stationary qubits using flying qubits within the same nanowire p-n junction.Comment: 19 pages, 6 figure

    AROS Is a Significant Biomarker for Tumor Aggressiveness in Non-cirrhotic Hepatocellular Carcinoma

    Get PDF
    Despite a low risk of liver failure and preserved liver function, non-cirrhotic hepatocellular carcinoma (HCC) has a poor prognosis. In the current study, we evaluated an active regulator of SIRT1 (AROS) as a prognostic biomarker in non-cirrhotic HCC. mRNA levels of AROS were measured in tumor and non-tumor tissues obtained from 283 non-cirrhotic HCC patients. AROS expression was exclusively up-regulated in recurrent tissues from the non-cirrhotic HCC patients (P = 0.015) and also in tumor tissues irrespective of tumor stage (P < 0.001) or BCLC stage (P < 0.001). High mRNA levels of AROS were statistically significantly associated with tumor stage (P < 0.001), BCLC stage (P = 0.007), alpha fetoprotein (AFP) level (P = 0.013), microvascular invasion (P = 0.001), tumor size (P = 0.036), and portal vein invasion (P = 0.005). Kaplan-Meir curve analysis demonstrated that HCC patients with higher AROS levels had shorter disease-free survival (DFS) in both the short-term (P < 0.001) and long-term (P = 0.005) compared to those with low AROS. Cox regression analysis demonstrated that AROS is a significant predictor for DFS along with large tumor size, tumor multiplicity, vascular invasion, and poor tumor differentiation, which are the known prognostic factors. In conclusion, AROS is a significant biomarker for tumor aggressiveness in non-cirrhotic hepatocellular carcinoma.1122Ysciescopu
    corecore