59 research outputs found

    Impacts of gender, weather, and workplace differences in farm worker's gear

    Get PDF
    Background: The farmers cannot help working in outdoor conditions which have high humidity and solar radiation during the harvest period. Wearable items including clothing are the nearest environment of human body, and to understand the current state of them can be a way to set up an active prevention strategy against the health risk from heat stress in summertime agriculture. The aim of this study was to investigate the work wear and accessories which the elderly farmers used during agricultural working. Methods: One hundred twenty farmers (49 males and 71 females) working in nine separate sites on different days took part in this study. The average age of subjects was 61 years old. We examined the types of working posture, clothing, and items that the farmers used and/or wore. We also interviewed the farmers to know why they used such items while working. Results: The results of this study were as follows: (1) Farmers worked in the thermal environment which was over wet bulb globe temperature (WBGT) reference value, and the farmers could suffer heat stress due to workload induced from wearing conventional long-sleeved shirts and long trousers which were 0.66 clo in average under this summertime working thermal condition. (2) The farmers tended to change the layer of upper clothing for adapting to weather condition. (3) The types of footwear used seemed to be related with facilities as well as weather, and farmers tended to wear lighter footwear when the weather is hotter or when they work in PVC greenhouse. The majority of elderly farmers wore loafers and rubber shoes which had indistinguishable thin soles. (4) The types of hats showed the difference between facilities as well as gender and only 31.7 % of all participants used long brims. (5) Korean elderly farmers did not use any active cooling item as agricultural auxiliary tools in summer harvesting time. Conclusions: Korean elderly farmers worked in poor surroundings which could threaten their health and safety and seemed not to adjust their workload and clothing during summer harvest season. Thus, it would be necessary to monitor individual responses in order to ensure that the risk of heat stress is preventedopen

    Performance evaluation of water-repellent combat uniforms using a static manikin and human subjects under a rainfall tower system

    Get PDF
    The purpose of the present study was to evaluate the water-repellent properties of newly-developed combat uniforms using a rainfall tower system. Two types of water-repellent- combat uniforms with an identical level of water repellency through textile tests (WR_M and WR_T) were compared with an untreated-combat uniform (Control). A static manikin was used to evaluate water-repellent properties in a standing position and eight male subjects participated to test walking effects under artificial rainfall. The results showed that it took to saturate the upper body was longer for WR_T than WR_M and Control in the standing position for both normal and heavy rain conditions (P < 0.05). The lower body in WR_T was rarely wet in the standing position after 60 min, whereas the lower body was partially wet while walking within 30 min. Changes in clothing weight after the rainfall test were 729 ± 21, 256 ± 36 and 137 ± 25 g per trial for Control, WR_M, and WR_T, respectively (P < 0.001). Subjects expressed better tactile, less colder, less heavier, and less humid sensations and less uncomfortable feeling for WR_T than Control or WR_M (P < 0.05), while WR_M was better only for tactile sensation and heaviness than Control (P < 0.05). Ten-time-washes had not impaired the water-repellent properties of WR_M or WR_T. These results indicated that the rainfall tower test is valid to verify water-repellent property of clothing ensemble and suggest a possibility of classifying the water repellency of clothing ensemble into sub-levels of an excellent and a fair class. Further studies on wider range of experimental conditions to validate the current results are required.This study is funded by Defense Agency for Technology and Quality (20190907EA7-00

    Impaired learning and memory in CD38 null mutant mice

    Get PDF
    CD38 is an enzyme that catalyzes the formation of cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate, both of which are involved in the mobilization of Ca2+ from intracellular stores. Recently, CD38 has been shown to regulate oxytocin release from hypothalamic neurons. Importantly, CD38 mutations are associated with autism spectrum disorders (ASD) and CD38 knockout (CD38(-/-)) mice display ASD-like behavioral phenotypes including deficient parental behavior and poor social recognition memory. Although ASD and learning deficits commonly co-occur, the role of CD38 in learning and memory has not been investigated. We report that CD38(-/-)mice show deficits in various learning and memory tasks such as the Morris water maze, contextual fear conditioning, and the object recognition test. However, either long-term potentiation or long-term depression is not impaired in the hippocampus of CD38(-/-)mice. Our results provide convincing evidence that CD38(-/-)mice show deficits in various learning and memory tasks including spatial and non-spatial memory tasks. Our data demonstrate that CD38 is critical for regulating hippocampus-dependent learning and memory without modulating synaptic plasticity.open1

    Trans-Differentiation of Neural Stem Cells: A Therapeutic Mechanism Against the Radiation Induced Brain Damage

    Get PDF
    Radiation therapy is an indispensable therapeutic modality for various brain diseases. Though endogenous neural stem cells (NSCs) would provide regenerative potential, many patients nevertheless suffer from radiation-induced brain damage. Accordingly, we tested beneficial effects of exogenous NSC supplementation using in vivo mouse models that received whole brain irradiation. Systemic supplementation of primarily cultured mouse fetal NSCs inhibited radiation-induced brain atrophy and thereby preserved brain functions such as short-term memory. Transplanted NSCs migrated to the irradiated brain and differentiated into neurons, astrocytes, or oligodendrocytes. In addition, neurotrophic factors such as NGF were significantly increased in the brain by NSCs, indicating that both paracrine and replacement effects could be the therapeutic mechanisms of NSCs. Interestingly, NSCs also differentiated into brain endothelial cells, which was accompanied by the restoration the cerebral blood flow that was reduced from the irradiation. Inhibition of the VEGF signaling reduced the migration and trans-differentiation of NSCs. Therefore, trans-differentiation of NSCs into brain endothelial cells by the VEGF signaling and the consequential restoration of the cerebral blood flow would also be one of the therapeutic mechanisms of NSCs. In summary, our data demonstrate that exogenous NSC supplementation could prevent radiation-induced functional loss of the brain. Therefore, successful combination of brain radiation therapy and NSC supplementation would provide a highly promising therapeutic option for patients with various brain diseases

    Patient-Specific Orthotopic Glioblastoma Xenograft Models Recapitulate the Histopathology and Biology of Human Glioblastomas In Situ

    Get PDF
    SummaryFrequent discrepancies between preclinical and clinical results of anticancer agents demand a reliable translational platform that can precisely recapitulate the biology of human cancers. Another critical unmet need is the ability to predict therapeutic responses for individual patients. Toward this goal, we have established a library of orthotopic glioblastoma (GBM) xenograft models using surgical samples of GBM patients. These patient-specific GBM xenograft tumors recapitulate histopathological properties and maintain genomic characteristics of parental GBMs in situ. Furthermore, in vivo irradiation, chemotherapy, and targeted therapy of these xenograft tumors mimic the treatment response of parental GBMs. We also found that establishment of orthotopic xenograft models portends poor prognosis of GBM patients and identified the gene signatures and pathways signatures associated with the clinical aggressiveness of GBMs. Together, the patient-specific orthotopic GBM xenograft library represent the preclinically and clinically valuable “patient tumor’s phenocopy” that represents molecular and functional heterogeneity of GBMs

    Scabies mimicking graft versus host disease in a hematopoietic cell transplant recipient

    Get PDF
    Scabies is a highly contagious skin infestation caused by the mite, Sarcoptes scabiei var. hominis. Complex responses to scabies mites in the innate, humoral, and cellular immune systems can cause skin inflammation and pruritus. Diagnosis can be challenging because scabies resembles other common skin conditions. We report the first Korean case of scabies in a hematopoietic cell transplant (HCT) recipient, initially suspected of skin graft versus host disease (GVHD). A T-cell acute lymphocytic leukemia patient underwent a sibling-matched allogeneic HCT and developed pruritus after cell engraftment. Treatment for GVHD did not improve the symptoms. He was diagnosed with scabies 30 days after the onset of symptoms

    Swine gut microbiome associated with non-digestible carbohydrate utilization

    Get PDF
    Non-digestible carbohydrates are an unavoidable component in a pig’s diet, as all plant-based feeds contain different kinds of non-digestible carbohydrates. The major types of non-digestible carbohydrates include non-starch polysaccharides (such as cellulose, pectin, and hemicellulose), resistant starch, and non-digestible oligosaccharides (such as fructo-oligosaccharide and xylo-oligosaccharide). Non-digestible carbohydrates play a significant role in balancing the gut microbial ecology and overall health of the swine by promoting the production of short chain fatty acids. Although non-digestible carbohydrates are rich in energy, swine cannot extract this energy on their own due to the absence of enzymes required for their degradation. Instead, they rely on gut microbes to utilize these carbohydrates for energy production. Despite the importance of non-digestible carbohydrate degradation, limited studies have been conducted on the swine gut microbes involved in this process. While next-generation high-throughput sequencing has aided in understanding the microbial compositions of the swine gut, specific information regarding the bacteria involved in non-digestible carbohydrate degradation remains limited. Therefore, it is crucial to investigate and comprehend the bacteria responsible for the breakdown of non-digestible carbohydrates in the gut. In this mini review, we have discussed the major bacteria involved in the fermentation of different types of non-digestible carbohydrates in the large intestine of swine, shedding light on their potential roles and contributions to swine nutrition and health

    Clothing insulation and temperature, layer and mass of clothing under comfortable environmental conditions

    Get PDF
    This study was designed to investigate the relationship between the microclimate temperature and clothing insulation (Icl) under comfortable environmental conditions. In total, 20 subjects (13 women, 7 men) took part in this study. Four environmental temperatures were chosen: 14??C (to represent March/April), 25??C (May/June), 29??C (July/August), and 23??C (September/October). Wind speed (0.14ms-1) and humidity (45%) were held constant. Clothing microclimate temperatures were measured at the chest (Tchest) and on the interscapular region (Tscapular). Clothing temperature of the innermost layer (Tinnermost) was measured on this layer 30 mm above the centre of the left breast. Subjects were free to choose the clothing that offered them thermal comfort under each environmental condition. We found the following results. 1) All clothing factors except the number of lower clothing layers (Llower), showed differences between the different environmental conditions (P&lt;0.05). The ranges of Tchest were 31.6 to 33.5??C and 32.2 to 33.4??C in Tscapular. The range of Tinnermost was 28.6 to 32.0??C. The range of the upper clothing layers (Lupper) and total clothing mass (Mtotal) was 1.1 to 3.2 layers and 473 to 1659 g respectively. The range of Icl was 0.78 to 2.10 clo. 2) Post hoc analyses showed that analysis of Tinnermost produced the same results as for that of Icl. Likewise, the analysis of Lupper produced the same result as the analysis of the number of total layers (Ltotal) within an outfit. 3) Air temperature (ta) had positive relationships with Tchest and Tscapular and with Tinnermost but had inverse correlations with Icl, Mtotal, Lupper and Ltotal. Tchest, Tscapular, and Tinnermost increased as ta rose. 4) Icl had inverse relationships with Tchest and Tinnermost, but positive relationships with Mtotal, Lupper and Ltotal. Icl could be estimated by Mtotal, Lupper, and Tscapular using a multivariate linear regression model. 5) Lupper had positive relationships with Icl and Mtotal, but Llower did not. Subjects hardly changed Llower under environmental comfort conditions between March and October. This indicates that each of the Tchest, Mtotal, and Lupper was a factor in predicting Icl. Tinnermost might also be a more influential factor than the clothing microclimate temperature.open1
    corecore