1,380 research outputs found

    COMPUTATIONAL MODELING OF METABOLIC PATHWAYS TOWARD PREDICTING DYNAMIC PHENOTYPES

    Get PDF
    Metabolic systems are important to a wide variety of applications, including therapeutic development, agricultural crop production, and manufacturing of industrial chemicals. Developing metabolic models is one of the best approaches to study metabolism, as computational experiments are generally cheaper and faster to perform than experiments in a laboratory. While there are computational frameworks that can model large metabolic systems at steady state or the metabolite dynamics of a small number of key metabolic pathways, it is substantially more difficult to model the dynamics of metabolism at the genome scale. In this thesis dissertation, I present three computational platforms that address several of the challenges in developing dynamic genome-scale metabolic models. First, I devised a stepwise machine learning strategy for identifying the regulatory topology within metabolic systems, which can be used to construct more accurate metabolic models. I then developed a framework for inferring absolute concentrations from relative abundances in metabolomics data, which will allow metabolomics (the systems-scale study of metabolites) to be more easily used with metabolic modeling tools. Finally, I implemented new constraints within a linear programming dynamic modeling framework that increase its ability to model a wider variety of metabolic systems. Together, these three platforms create a cohesive workflow for modeling the dynamics of metabolism at any scale.Ph.D

    Distribution of Abdominal Obesity and Fitness Level in Overweight and Obese Korean Adults

    Get PDF
    Background. Abdominal obesity and its relative distribution are known to differ in association with metabolic characteristics and cardiorespiratory fitness. This study aimed to determine an association between fitness level and abdominal adiposity in overweight and obese adults. Methods. 228 overweight and obese individuals were classified as either cardiorespiratory unfit or fit based on their recovery heart rate. Visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), the visceral-to-subcutaneous adipose tissue ratio (VAT/SAT ratio), and cardiometabolic characteristics were analyzed to examine the relationship between recovery heart rate and abdominal adiposity components. Results. After adjustments for age and sex, significant relationships of recovery heart rate and VAT, SAT, and VAT/SAT ratio were found; however, SAT was not significantly associated after further adjustment for body mass index (BMI) (r=0.045, P=0.499), whereas VAT (r=0.232, P<0.001) and VAT/SAT ratio (r=0.214, P=0.001) remained associated. Through stepwise multiple regression analyses after adjustment for age, sex, BMI, lifestyle factors, mean blood pressure, fasting glucose, HOMA-IR, lipid profiles, and hsCRP, recovery heart rate was identified as an independent variable associated with VAT (Ī²=0.204, P<0.001) and VAT/SAT ratio (Ī²=0.163, P=0.008) but not with SAT (Ī²=0.097, P=0.111). Conclusions. Cardiorespiratory fitness level is independently associated with VAT and the VAT/SAT ratio but not with SAT in overweight and obese adults

    Field theoretical representation of the Hohenberg-Kohn free energy for fluids

    Full text link
    To go beyond Gaussian approximation to the Hohenberg-Kohn free energy playing the key role in the density functional theory (DFT), the density functional \textit{integral} representation would be relevant, because field theoretical approach to perturbative calculations becomes available. Then the present letter first derives the associated Hamiltonian of density functional, explicitly including logarithmic entropy term, from the grand partition function expressed by configurational integrals. Moreover, two things are done so that the efficiency of the obtained form may be revealed: to demonstrate that this representation facilitates the field theoretical treatment of the perturbative calculation, and further to compare our perturbative formulation with that of the DFT.Comment: 5 pages, revtex, modified on 13 April 2000 [see eqs. (3), (6), and (13)

    BRST-antifield-treatment of metric-affine gravity

    Full text link
    The metric-affine gauge theory of gravity provides a broad framework in which gauge theories of gravity can be formulated. In this article we fit metric-affine gravity into the covariant BRST--antifield formalism in order to obtain gauge fixed quantum actions. As an example the gauge fixing of a general two-dimensional model of metric-affine gravity is worked out explicitly. The result is shown to contain the gauge fixed action of the bosonic string in conformal gauge as a special case.Comment: 19 pages LATEX, to appear in Phys. Rev.

    DNA polymerase Ī“ stalls on telomeric lagging strand templates independently from G-quadruplex formation

    Get PDF
    Previous evidence indicates that telomeres resemble common fragile sites and present a challenge for DNA replication. The precise impediments to replication fork progression at telomeric TTAGGG repeats are unknown, but are proposed to include G-quadruplexes (G4) on the G-rich strand. Here we examined DNA synthesis and progression by the replicative DNA polymerase Ī“/proliferating cell nuclear antigen/replication factor C complex on telomeric templates that mimic the leading C-rich and lagging G-rich strands. Increased polymerase stalling occurred on the G-rich template, compared with the C-rich and nontelomeric templates. Suppression of G4 formation by substituting Li(+) for K(+) as the cation, or by using templates with 7-deaza-G residues, did not alleviate Pol Ī“ pause sites within the G residues. Furthermore, we provide evidence that G4 folding is less stable on single-stranded circular TTAGGG templates where ends are constrained, compared with linear oligonucleotides. Artificially stabilizing G4 structures on the circular templates with the G4 ligand BRACO-19 inhibited Pol Ī“ progression into the G-rich repeats. Similar results were obtained for yeast and human Pol Ī“ complexes. Our data indicate that G4 formation is not required for polymerase stalling on telomeric lagging strands and suggest that an alternative mechanism, in addition to stable G4s, contributes to replication stalling at telomeres

    Distribution of Abdominal Obesity and Fitness Level in Overweight and Obese Korean Adults

    Get PDF
    Background. Abdominal obesity and its relative distribution are known to differ in association with metabolic characteristics and cardiorespiratory fitness. This study aimed to determine an association between fitness level and abdominal adiposity in overweight and obese adults. Methods. 228 overweight and obese individuals were classified as either cardiorespiratory unfit or fit based on their recovery heart rate. Visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), the visceral-to-subcutaneous adipose tissue ratio (VAT/SAT ratio), and cardiometabolic characteristics were analyzed to examine the relationship between recovery heart rate and abdominal adiposity components. Results. After adjustments for age and sex, significant relationships of recovery heart rate and VAT, SAT, and VAT/SAT ratio were found; however, SAT was not significantly associated after further adjustment for body mass index (BMI) ( = 0.045, = 0.499), whereas VAT ( = 0.232, &lt; 0.001) and VAT/SAT ratio ( = 0.214, = 0.001) remained associated. Through stepwise multiple regression analyses after adjustment for age, sex, BMI, lifestyle factors, mean blood pressure, fasting glucose, HOMA-IR, lipid profiles, and hsCRP, recovery heart rate was identified as an independent variable associated with VAT ( = 0.204, &lt; 0.001) and VAT/SAT ratio ( = 0.163, = 0.008) but not with SAT ( = 0.097, = 0.111). Conclusions. Cardiorespiratory fitness level is independently associated with VAT and the VAT/SAT ratio but not with SAT in overweight and obese adults
    • ā€¦
    corecore