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SUMMARY 
 

 

 

 

Metabolic systems are important to a wide variety of applications, including 

therapeutic development, agricultural crop production, and manufacturing of industrial 

chemicals. Developing metabolic models is one of the best approaches to study 

metabolism, as computational experiments are generally cheaper and faster to perform 

than experiments in a laboratory. While there are computational frameworks that can 

model large metabolic systems at steady state or the metabolite dynamics of a small 

number of key metabolic pathways, it is substantially more difficult to model the 

dynamics of metabolism at the genome scale. In this thesis dissertation, I present three 

computational platforms that address several of the challenges in developing dynamic 

genome-scale metabolic models. First, I devised a stepwise machine learning strategy for 

identifying the regulatory topology within metabolic systems, which can be used to 

construct more accurate metabolic models. I then developed a framework for inferring 

absolute concentrations from relative abundances in metabolomics data, which will allow 

metabolomics (the systems-scale study of metabolites) to be more easily used with 

metabolic modeling tools. Finally, I implemented new constraints within a linear 

programming dynamic modeling framework that increase its ability to model a wider 

variety of metabolic systems. Together, these three platforms create a cohesive workflow 

for modeling the dynamics of metabolism at any scale.
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CHAPTER 1: Introduction 
 

 

 

1.1 Metabolic Systems 

 As the set of chemical reactions that are necessary to sustain life, metabolism is 

one of the most critical processes in all organisms, from the smallest bacterium to the 

largest mammals. Metabolism generates energy for our bodies after we eat, directs 

chemical resources to our muscles after a workout, and even breaks down unnecessary 

chemicals into waste products as we sleep. Whether we are aware of it or not, metabolic 

processes are constantly working behind the scenes to ensure our bodies are functioning 

properly. When speaking of metabolism, one may initially think of its importance in 

humans and how it pertains to topics such as weight-loss and aging. What some people 

may not realize is that metabolism also plays a key role in various diseases1, drug 

discovery2, and developing personalized medical treatment for patients3. 

Though understanding human metabolism clearly has biomedical relevance, there 

is also great interest in studying the metabolism of other species, including the model 

organisms Escherichia coli and Saccharomyces cerevisiae. Metabolism in these two 

unicellular organisms, and others like them, is less complex than the organism-scale 

metabolism found in humans, but it is still incredibly valuable to science. While the most 

important pathways, such as those in central carbon metabolism, are topologically well-

conserved across different species4, many organisms have unique metabolic reactions or 

are able to produce certain chemicals in much higher quantities than other species due to 

corresponding fitness advantages that have been selected for over the course of evolution. 

An example of a microorganism with unique metabolite production capabilities is S. 
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cerevisiae, a popular yeast species in the culinary arts, brewing, and bioresearch because 

of its innate ability to produce ethanol and CO2 during fermentation5. Studying the 

differences in metabolism across various organisms can provide meaningful insight about 

the importance of certain metabolic pathways. 

 Besides just studying the metabolism of microorganisms, scientists also engineer 

metabolism, using genetic modifications to reroute metabolic resources and produce high 

quantities of molecules of interest. Heterologous pathways can even be introduced into 

the system to allow the cell to synthesize products it otherwise could not6. This practice 

of designing and engineering pathways is known as metabolic engineering7. The field of 

metabolic engineering has rapidly expanded over the last few decades8 as researchers 

have harnessed its potential to engineer organisms to produce valuable chemicals that 

would otherwise be too expensive or too difficult to manufacture via chemical synthesis. 

Metabolic engineering has proven useful in a wide variety of applications including 

therapeutic development9, agricultural crop production10, and renewable energies11. In the 

next sections, I discuss the data used to understand metabolic systems. 

 

1.2 Metabolomics 

 To study metabolism in a range of organisms, metabolomics has emerged as a 

valuable -omics field, following in the footsteps of transcriptomics, proteomics, and 

genomics. Metabolomics is defined as the systems-scale study of metabolites, the 

chemical intermediates used to sustain life12. Whereas transcriptomics, proteomics, and 

genomics provide more upstream views of cellular functions, metabolomics is a direct 

readout of biochemical activity and the metabolic state of a cell. Since its inception, 
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metabolomics has been used in a wide variety of applications. 

 

1.2.1 Applications of metabolomics 

 Perhaps the most immediate and widely-known uses of metabolomics relate to 

human metabolism. One of the most important applications of metabolomics is its use in 

medicine as a tool to identify disease biomarkers1. By comparing the metabolite profiles 

of cancer patients to those of healthy individuals, metabolomics has elucidated key 

metabolite biomarkers that have been helpful in disease prognosis or monitoring disease 

progression13. Metabolomics has also provided insight for better understanding and 

preventing diseases in the first place14. Many common diseases15, such as heart disease, 

diabetes, Parkinson’s, and various cancers, are known to have clear connections with 

metabolism, which has led to great interest in using metabolomics to develop and screen 

new drugs. When testing different drug candidates, metabolomics can help determine 

which candidates affect specific metabolic pathways based on the metabolic changes they 

induce16, 17. This is especially important in determining if a drug candidate could lead to 

toxic levels of certain metabolites within the body. Recently, the idea of using 

metabolomics in personalized medicine3, where medical treatment is tailored specifically 

to a patient’s metabolome, has also gained popularity. 

 Metabolomics has not only been used to study metabolism in people, but it has 

also had a significant impact on plant and microbial research. In plant sciences, 

metabolomics has generated insight about plant response to changing environments18, 

antimicrobial resistance in agricultural crops19, differences in metabolic profiles between 

transgenic plants20, and gene annotation21. Microbial metabolomics research has been 
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incredibly beneficial for disease research. In particular, yeast metabolomics has been 

used to study cancer22 and bacterial metabolomics has the potential to reveal quorum 

sensing metabolites that could mitigate the effects of bacterial infections23. Additionally, 

the link between metabolomics and the gut microbiota has helped researchers understand 

how our bodies breakdown food or foreign substances, such as pharmaceutical drugs24.  

Metabolomics has also garnered interest as a tool for building metabolic models25, 

as it can contribute a large amount of metabolic information. Despite providing direct 

insight on how metabolic resources are being consumed or produced, one area in which 

metabolomics has been used surprisingly little is metabolic engineering26. One of the 

most challenging obstacles to using metabolomics in metabolic engineering and other 

analytical tools is how limited raw metabolomics data can be without using standards for 

each metabolite. Because the properties of different chemicals cause metabolites to be 

measured relatively instead of absolutely, it is not possible to compare the quantities of 

different metabolites to each other. Below, I discuss the different analytical instruments 

used to measure metabolomics and further expand on the current limitations of using 

metabolomics data with metabolic tools. 

 

1.2.2 Methods for measuring metabolomics data 

 There are three common analytical techniques used to measure metabolomics 

data. Nuclear magnetic resonance (NMR) spectroscopy uses strong magnetic fields to 

measure chemicals that behave differently based on the nuclei in their atoms. One key 

advantage of using NMR is that it is a nondestructive method, meaning samples can be 

reused27. However, the biggest disadvantage of NMR is its low sensitivity. To measure 
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hundreds or thousands of metabolites at low concentrations, researchers typically turn to 

gas chromatography or liquid chromatography coupled to mass spectrometry (GC-MS 

and LC-MS, respectively). GC-MS primarily separates chemicals in the gas column 

based on their boiling points and their affinity for the chromatography column, and then 

the molecules in the sample are ionized and further separated via a mass spectrometer. 

Prior to injection into a GC-MS instrument, samples must be derivatized because many 

chemicals are not volatile enough to be vaporized effectively in their native states28. The 

advantage of LC-MS is that no derivatization is necessary because chemicals are 

separated in a liquid phase based on their interactions with a stationary phase in the 

column instead of in the gas phase.  

Both GC-MS and LC-MS have become increasingly popular29 and arguably the 

preferred analytical tools to measure metabolites, but it is difficult to quantify absolute 

concentrations of metabolites using either method. The data that these two mass 

spectrometry approaches yield are relative, rather than absolute, abundances. While the 

relative abundances of a single metabolite can be compared across different timepoints or 

different samples in an experiment, comparing the relative abundances of different 

metabolites has little quantifiable meaning (Figure 1), making it difficult to integrate 

metabolomics data into many analytical tools, including computational modeling 

frameworks. When quantification of only a few metabolites is required, researchers can 

use chemical standards to measure absolute concentrations. Unfortunately, chemical 

standards can be expensive, time-consuming to run, and unavailable for many 

metabolites30-32. Developing a platform for inferring absolute concentrations without the 

use of chemical standards would be impactful for incorporating metabolomics data into 
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both present and future metabolic tools. 

 

 

Figure 1: Example of a chromatogram. 

Peaks in a chromatogram ideally represent different metabolites. Because metabolites are 

often measured in terms of relative abundances, the quantities of different metabolites 

cannot be directly compared. 

 

1.3 Metabolic Modeling Approaches 

 There are two fundamental class of approaches researchers use to model 

metabolism33. Constraint-based models use linear programs to efficiently model 

metabolic systems, while ordinary differential equation-based models use detailed kinetic 

equations to accurately model reactions. The advantages and disadvantages of these 

approaches are discussed in detail in this section. 

 

1.3.1 Constraint-based modeling 

Constraint-based models (CBMs) are arguably the most popular metabolic 

modeling approach because they can be easily developed for any system in which the 

stoichiometry of reactions is known. The quintessential CBM method in metabolic 

modeling is flux balance analysis (FBA)34. FBA assumes that the studied system is at 
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steady-state and therefore the metabolite concentrations do not change over time. This 

assumption forces the influxes and effluxes of each metabolite to cancel out, which leads 

to a system of linear mass balance equations based on the stoichiometry of the system. 

The fluxes within this system of equations can be easily calculated using linear algebra 

tools without needing to estimate any kinetic parameters, one of the most appealing 

aspects of FBA. In biological systems, these systems of stoichiometric equations are 

generally underdetermined (i.e. there are more unknown fluxes than metabolites), leading 

to an infinite number of possible flux solutions. To overcome this obstacle, FBA 

implements constraints on the fluxes and most importantly, an objective function. The 

objective function is typically some hypothesized biological goal of the organism (i.e. 

maximizing biomass or ATP production), reflecting some evolutionary pressure for cell 

survival35. Together, the system of mass balance equations, flux constraints, and 

objective function create a linear program (LP), a mathematical optimization problem 

that can be solved efficiently even for large-scale problems, which is a key reason why 

CBMs are popular for modeling large systems. The formulation for FBA can be written 

as: 

 

max 𝑐𝑇𝑣 

                                    𝑠. 𝑡.    𝑆 ∙ 𝑣 = 0  (Equation 1) 

𝑣𝐿𝐵 < 𝑣 < 𝑣𝑈𝐵 

 

where c is a vector of weights that determine the objective function, v is the flux vector, S 

is the stoichiometric matrix that describes the inflow and outflow of fluxes for each 
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metabolite, and vLB and vUB are vectors of the lower and upper bounds for each flux, 

respectively. 

While FBA models are easy to develop for many biological systems due to their 

LP structure, their assumption of steady state precludes capturing any metabolite 

dynamics. The steady-state assumption is useful for understanding the metabolism of an 

organism under static conditions, but cells are generally not at steady-state due to 

constant changes in the extracellular environment. Nevertheless, FBA is one of the best 

modeling tools to efficiently study metabolism at any scale and predict how metabolic 

resources are generally being produced and used. 

 

1.3.2 Examples of constraint-based models 

As the most common CBM approach in metabolic modeling, FBA has led to the 

development of numerous frameworks that are heavily influenced by or are direct 

extensions of the original FBA. Each of these new modeling approaches aim to 

supplement the relatively simple structure and assumptions of FBA, often integrating new 

biological information that improves modeling accuracy. Energy balance analysis 

(EBA)36, thermodynamic metabolic flux  analysis (TMFA)37, and network-embedded 

thermodynamic analysis (NET analysis)38 have incorporated thermodynamic constraints 

into their frameworks to eliminate flux distributions that are not energetically feasible39. 

Other methods, such as Minimization of Metabolic Adjustment (MoMA)40 and 

parsimonious flux balance analysis (pFBA)41 find flux distributions that are least taxing 

to the cell. MoMA predicts flux distributions in the feasible search space that are closest 

to the wildtype flux profile after a gene knockout and pFBA optimizes the system’s 
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objective function while concurrently minimizing the total flux. 

There have also been several extensions of FBA that attempt to track dynamic 

changes in metabolic systems. Recently, unsteady-state flux balance analysis (uFBA)42 

demonstrated it could predict dynamic metabolic flux states in several systems by using a 

novel piecewise simulation method that determines if a system is at steady-state based on 

the rates of change of its metabolites. Dynamic Flux Balance Analysis (DFBA)43 in 

particular has garnered a substantial amount of attention as one of the first FBA-based 

methods to attempt to capture metabolite dynamics. DFBA uses two formulations to track 

dynamics: the Dynamic Optimization Approach (DOA) and the Static Optimization 

Approach (SOA). Although the DOA method is more accurate, it contains many non-

linear constraints that make it more computationally taxing to use. The SOA formulation 

is much simpler and can still model metabolite dynamics, but it is unable to incorporate 

regulatory information like DOA. DFBA was a significant step in bridging the gap 

between CBM and ODE-based models, but most researchers still prefer kinetic models 

when accurate representations of metabolic systems are required. Overcoming the 

limitations of DFBA will be critical toward efficiently developing dynamic metabolic 

models at the genome scale. 

 

1.3.3 Ordinary differential equation-based modeling 

While CBMs excel at developing relatively simple models for systems of all 

sizes, ODE-based models use detailed kinetic equations to accurately model biological 

reactions. These kinetic equations allow for ODE-based models to track changes in 

metabolite concentrations and fluxes, but it comes at a price. Each of these kinetic 
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equations typically include several kinetic parameters that need to be estimated if they are 

not known a priori, which is often the case. While parameter estimation is achievable 

when there are only tens of reactions, it quickly becomes infeasible as the size of the 

modeled system increases due to the ample amount of data necessary to identify 

parameters accurately. This scaling problem makes it difficult to create kinetic models at 

the genome scale and is why most large models consisting of hundreds or thousands of 

metabolites and fluxes are developed using CBMs. 

 

1.3.4 Examples of ODE-based models 

 As one of the most studied organisms, there are several kinetic models that have 

been developed for E. coli44-46. These ODE-based models have been used to predict 

different growth rates due to genetic perturbations and the increased biosynthesis of 

various target molecules, which make these models attractive for metabolic engineering 

applications. There have also been numerous ODE-based models developed for S. 

cerevisiae47, 48, as it is one of the most important eukaryotic species in metabolism 

research. Like E. coli, kinetic models of S. cerevisiae have been vital to metabolic 

engineering, especially in the study of ethanol production49. While E. coli and S. 

cerevisiae are certainly two of the most widely-studied and kinetically modeled 

microorganisms, other scientifically relevant systems, such as Lactococcus lactis50 and 

Pseudomonas putida51, have also been modeled using ODEs. 

Many of these kinetic models focus on central carbon metabolism, as it arguably 

contains the most important pathways in metabolism and is small enough that parameter 

estimation is still feasible. While most ODE-based models are restricted to modest 
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sections of metabolism, there have been a few attempts at constructing genome-scale 

kinetic models. An ODE-based model of E. coli metabolism was recently developed 

using Michaelis-Menten based kinetics with ensemble modeling and genetic algorithms 

for parameter estimation and was shown to predict several hundred engineered strains 

more accurately than other modeling approaches52. There have also been efforts to create 

more generalized approaches for developing genome-scale kinetic models53-55, but most 

still require lengthy parameter estimation steps, known kinetic constants, or are only 

useful near the reference state of the modeled system. Despite these attempts, there 

remains a divide between efficient modeling frameworks that are scalable and modeling 

approaches that capture metabolite dynamics. 

 

1.3.5 Linear Kinetics-Dynamic Flux Balance Analysis 

To bridge the gap between CBMs and ODE-based models, our group developed 

Linear Kinetics-Dynamic Flux Balance Analysis (LK-DFBA)56. LK-DFBA is a novel 

modeling framework that can track metabolite dynamics while maintaining an LP 

structure, which is a significant step toward efficiently modeling biological systems at the 

genome scale. LK-DFBA is inspired by the work presented in DFBA and attempts to 

combine the strengths of the DOA and SOA formulations. LK-DFBA introduces novel 

linear kinetics constraints that model the interaction between a controller metabolite and 

the target flux that it regulates. These constraints are the driving force behind metabolite 

accumulation and depletion by constraining the maximum reaction rates of fluxes based 

on the metabolite concentration at a given time. Both mass action and allosteric 

regulatory interactions are modeled by these linear kinetics constraints.  
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We have previously demonstrated that LK-DFBA can recapitulate the training 

data of a synthetic system and a kinetic model of E. coli44. However, LK-DFBA has not 

been used to predict phenotypes when using different initial metabolite concentrations or 

introducing perturbations to pathways in the system. Before LK-DFBA can become a 

prominent metabolic modeling framework, it needs to at least be validated on data that is 

not used to train the actual model. Furthermore, one key area that could be improved in 

LK-DFBA is the construction of the kinetics constraints. In the original framework, the 

kinetics constraints are crude linear approximations of interactions between metabolites 

and fluxes. New kinetics constraints that better capture biological phenomena could lead 

to an increase in modeling accuracy. 

 

1.4 Regulation in Metabolic Systems 

The only information classical FBA requires is the stoichiometric topology of the 

system, an objective function, and flux constraints to build a metabolic model. However, 

in many cases this is not enough to construct an accurate representation of the system. 

One important feature of metabolism that FBA does not account for is regulation within 

an organism. Regulation can significantly impact the rate of reactions and must be 

incorporated when developing accurate metabolic models. 

 

1.4.1 Transcriptional regulation 

Transcriptional regulation is one of the most well-known and widely-studied 

forms of regulation in biological systems. In transcriptional regulation, transcription of 

DNA to RNA is controlled by regulators, such as transcription factors, that can increase 
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or decrease the amount of gene expression. Because gene expression ultimately leads to 

enzyme production (or lack thereof), transcriptional regulation can be an important factor 

in determining the rate of some metabolic reactions. However, because these 

transcription factors or other transcriptional regulatory proteins do not directly modulate 

enzyme activity, the timescale of these regulatory effects may not be immediately 

obvious57, 58. 

 

1.4.2 Allosteric regulation 

While transcriptional regulation occurs at the DNA level, allosteric regulation 

takes place at the metabolite level. Allosteric regulation results from a regulator, often a 

small molecule, interacting with a protein, such as an enzyme, at a location other than its 

active site59. Like transcription factors in transcriptional regulation, allosteric regulators 

can inhibit or induce their target. Besides acting as the primary substrate in many 

different metabolic reactions, metabolites are also often allosteric regulators in other 

reactions (Figure 2). Because allosteric regulation occurs at the metabolite level, it 

directly impacts the metabolic state of the system and occurs on timescales much faster 

than transcriptional regulation58, which makes it especially critical in understanding the 

metabolism of different organisms. 
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Figure 2: Example of metabolite-dependent allosteric regulation. 

Metabolite x1 is the substrate of the reaction flux v1 and metabolite x2 is the product. 

Unlike x1, metabolite x3 is not consumed by the reaction but instead acts as a regulator 

that inhibits the reaction rate. 

 

 

1.4.3 Constraint-based modeling frameworks that integrate regulation 

There have been a few iterations of FBA that try to account for regulation in their 

frameworks. Regulatory flux balance analysis (rFBA)60, integrated flux balance analysis 

(iFBA)61, and  steady-state regulatory flux balance analysis (SR-FBA)62 are three 

methods created to incorporate transcriptional regulation into the original FBA 

formulation. Each uses Boolean notation to designate whether a gene is active or not. 

These frameworks were found to more accurately predict different phenotypes and better 

understand how transcriptional regulation affects metabolism. When implementing 

transcriptional regulation into such frameworks, pseudo “time delays” are often used to 

demonstrate the indirect impact of transcriptional regulation on metabolic activity. 

Despite its importance, allosteric regulation has not been integrated into CBMs as 

often. In ODE-based models, allosteric regulation can be readily implemented in a 

reaction by adding extra parameters and variables to its kinetic equation. There have only 

been a few attempts in the literature to integrate allosteric regulation with FBA. Allosteric 

Regulation FBA (arFBA)63 is an extension of pFBA that modifies the objective function 

to implement allosteric regulation. This new objective function includes terms that set the 
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flux ratio equal to the turnover rate (of metabolites that regulate the flux) ratio. One 

downside of using this method is that it assumes that the ratios of the flux and turnover 

rate are exactly equal to each other, providing no flexibility. In LK-DFBA we have 

implemented allosteric regulation within the linear kinetics constraints.  

 

1.4.4 Determining the topology of allosteric regulation 

Although allosteric regulation is prevalent in most biological systems, the 

regulatory topology of different metabolic systems is often unknown. In contrast to the 

stoichiometry of metabolic reactions, which is relatively well-conserved across species64, 

regulation can vary greatly. It can be difficult to experimentally identify the regulatory 

structure of a system because of the vast number of metabolites that could act as 

regulators for each reaction in metabolism. Without knowing how metabolic reactions are 

regulated, it is challenging to accurately model metabolism. As transcriptomics and 

genomics are currently much more mature fields than metabolomics and fluxomics, there 

have been many computational frameworks developed to map out transcriptional 

regulation in cells65-72.  

Computational methods for identifying allosteric regulation have been less 

common, though there are a few approaches that have been developed. Link et al. used 

ensemble modeling to establish the most likely regulatory structures of reactions58. In 

another approach, systematic identification of meaningful metabolic enzyme regulation 

(SIMMER)73 uses non-linear optimization to fit data to simple Michaelis-Menten kinetic 

equations and determine if additional regulatory elements are required to sufficiently 

explain the data. Both of these methods require estimation of parameters, which can be 
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difficult to obtain for lesser-studied organisms. New methods for determining the 

topology of allosteric regulation are highly desirable. 

Machine learning has become a popular approach for finding patterns within large 

datasets and creating predictive models using artificial intelligence. By training machine 

learning algorithms on “training data,” models have been developed to predict protein 

structures, gene function, and gene regulation74. In the context of metabolomics, machine 

learning has been previously used to impute missing values75 and discover new 

biomarkers76, but it has not been used to identify the regulatory topology of metabolic 

systems. Applying machine learning to discover new regulatory interactions could enable 

development of accurate metabolic representations of systems where regulation has been 

poorly characterized. 

 

1.5 Thesis overview 

With applications in medicine, agriculture, energy, and more, the importance of 

studying metabolic systems is evident. Researchers have demonstrated that combining 

metabolomics with computational modeling has led to new insight into metabolic 

systems and it will continue to be a critical step toward understanding metabolism at the 

genome scale. Here, I have discussed several key areas in metabolic modeling that need 

to improve to create a streamlined process for modeling metabolic systems given only 

raw metabolomics data and the stoichiometry of the system. First, allosteric regulation in 

organisms that are not well-studied is often unknown, which can make it difficult to 

model metabolite dynamics. Second, while metabolomics is a direct readout of a system’s 

metabolic state and therefore has promise in providing a plethora of data for 
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computational tools, any quantification of metabolites is often in terms of relative 

abundances, which makes it difficult to compare different metabolites to each other. 

Finally, although CBMs are more efficient and scalable in modeling different biological 

systems compared to ODE-based frameworks, they lack the ability to capture metabolite 

dynamics. LK-DFBA is a new framework that combines the advantages of both CBMs 

and ODE-based models, but there are still several areas that must be improved before it 

can become an invaluable tool in the metabolic modeling community. In this thesis, I aim 

to address each of these concerns and create a cohesive workflow for developing 

predictive metabolic models.   
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CHAPTER 2: A Stepwise Machine Learning Framework for Predicting 

Metabolite-dependent Regulatory Interactions 
 

 

 

2.1 Background 

Biochemists have amassed a large amount of knowledge about the topology of the 

chemical reaction network that cells use to transform nutrients into energy and the 

building blocks for more cells, collectively known as “metabolism”. The substrates, 

products, and cofactors for hundreds of reactions have been elucidated, from the most 

central pathways like glycolysis to more distant pathways for the biosynthesis of 

uncommon metabolites. Many of these pathways are extremely well-conserved across the 

tree of life64, with the basics of central carbon metabolism being quite similar from 

bacteria to humans. What varies much more greatly across species, and what allows such 

diverse metabolic phenotypes to arise from such otherwise similar reaction networks, is 

the regulation and utilization of the reactions in those networks. However, this regulation, 

despite its major importance in the function and diversity of life, is nowhere near as well 

understood as the topology of the metabolic network46. This is especially true for the 

direct regulation of reactions by metabolites, which is particularly poorly characterized 

compared to some other levels of regulation like transcriptional regulation. This is in 

large part due to the difficulty in experimental characterization of direct regulation by 

metabolites. 

 One critical form of direct regulation of metabolic reactions (and arguably the 

most common) is allosteric regulation, where a regulator and a protein (in this case an 

enzyme) interact at a location other than the active site77. In this mechanism, a metabolite 
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that is not the primary substrate of an enzyme binds to that enzyme and inhibits or 

promotes the reaction rate, most typically via an induced change in protein conformation. 

While metabolite levels can affect processes on the genome, transcriptome, and proteome 

levels78, metabolite-dependent regulation of enzyme reaction rates is extremely important 

because it results in the control of reactions on a short timescale (less than 30 seconds) 

due to the direct interaction between metabolite and enzyme rather than requiring 

intermediate steps like transcription to effect changes58, 63. Their prevalence in metabolic 

systems makes it vital to account for these regulatory interactions to create accurate 

metabolic models.  

Metabolic models that use only the known stoichiometry of the system and 

exclude metabolite-dependent regulation often have extremely limited accuracy. 

Machado et al. showed that including allosteric regulation in a model of E. coli is vital for 

predicting flux dynamics and can reveal “metabolic hubs,” where a metabolite is 

connected to many reactions instead of only the few found in the stoichiometric 

topology63. Despite its prevalence and importance, the exact structure of this regulatory 

network (which metabolites regulate which fluxes) is typically unknown in all but the 

best-studied metabolic pathways in the best-studied organisms. With hundreds of 

metabolites and hundreds of fluxes in any given metabolic network and no effective high-

throughput methods for finding metabolite-protein interactions (compared to, for 

example, protein-protein interactions79, 80), the space of possible regulatory interactions is 

too vast to experimentally explore81. 

As discussed at the beginning of this thesis, there have only been a few 

computational approaches to identify metabolite-dependent regulatory interactions of 
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enzymes in metabolic systems. Link et al.58 used dynamic metabolite data to fit an 

ensemble of kinetic models with different putative regulatory interactions to rank which 

interactions contributed the most to fitting accuracy. Another approach by Hackett et al., 

named SIMMER73, estimated kinetic parameters using non-linear optimization to 

establish if all reactions in a system could be sufficiently explained by Michaelis-Menten 

kinetics or if additional allosteric parameters were required. While these computational 

approaches are invaluable in saving time and costs for laboratory experiments, both 

methods rely on sampling58 or estimating73 kinetic parameters, which can be 

computationally taxing. An approach for identifying metabolite-dependent regulatory 

interactions without requiring kinetic parameters would be extremely useful for systems 

biology modeling. Although approaches using protein docking, such as AlloFinder82, are 

promising for future ab initio prediction of regulatory interactions, current limitations in 

the accuracy of molecular simulations make systems-scale exploration of allosteric 

interaction space challenging and motivate a desire for approaches that can exploit 

increasingly widely available experimental datasets for these purposes. 

Here, we present a new machine learning approach for Stepwise Classification Of 

Unknown Regulation (SCOUR) that leverages metabolomics and fluxomics data to 

predict likely metabolite-dependent regulatory interactions. SCOUR uses a stepwise 

process that focuses on identifying reactions controlled by one, two, or three metabolites. 

While SCOUR benefits from stepwise, serial inference of these increasingly complex 

interactions, each step is independent, uses different classification features, and can be 

performed without the others. Importantly, the classification task that SCOUR looks to 

address typically has insufficient training data available to generate useful models, so we 
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devise a strategy we refer to as “autogeneration” that we use to create sufficient data to 

train the models.  We test our framework on two synthetic model networks, as well as on 

models of S. cerevisiae and E. coli metabolism, to show that SCOUR can be used on a 

variety of systems. Applying SCOUR to poorly-studied organisms has the potential to 

enable discovery of previously unknown regulatory interactions that are key to 

developing accurate and predictive metabolic models. 

 

 

2.2 Methods for Predicting Regulatory Interactions 

In this work, we examined four metabolic networks of varying size and 

complexity: two synthetic model networks and two biological systems. We simulated 

each metabolic network with fifteen sets of randomly generated metabolite concentration 

initial conditions (except for the first set of initial conditions for the biological systems, 

which were kept at their original values) to produce fifteen sets of metabolite 

concentration and flux data used in the testing sets of SCOUR. Each metabolic network is 

described in detail below. 

 

2.2.1 Synthetic model networks 

 To initially test and evaluate SCOUR, we created two small synthetic model 

networks. The Smaller Synthetic Model (Figure 3A) contains six metabolites and six 

reactions, while the Bigger Synthetic Model (Figure 3B) contains ten metabolites and ten 

fluxes. Synthetic systems of these sizes are small and simple enough to easily assess the 

performance of SCOUR while developing the framework, but large enough to emulate 

behavior of metabolite-flux interactions in biological systems. In both models, the influx 
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(v1) is a constant flux that is not controlled by any metabolites and is not considered when 

using SCOUR. Both models contain reactions controlled by one, two, or three 

metabolites, including both positive and negative regulatory interactions. Table 3 

summarizes the number of each type of interaction in each model. The network dynamics 

were defined using Biochemical Systems Theory (BST) equations using power law 

kinetics for reaction rates83, with mass action parameters randomly assigned between 0.1 

and 1 and regulation parameters randomly assigned between 0.1 and 1 for positive 

regulatory interactions and between -1 and -0.1 for negative regulatory interactions. Each 

model was simulated for 10 seconds to generate synthetic data. 

 

 

Figure 3: Synthetic systems tested with SCOUR. 

Two synthetic model networks created using BST frameworks to generate in silico 

metabolomics and fluxomics data. xi represent metabolites, vi represent reaction fluxes 

(solid black lines), long-dashed red lines represent regulatory behavior that causes 

inhibition, and short-dashed green lines represent regulatory behavior that increases 

activity. 

 

2.2.2 Biological models 

 To test SCOUR on more biologically relevant systems, we examined a model of 

glycolysis in Saccharomyces cerevisiae47 and a model of central carbon metabolism in 
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Escherichia coli44. The S. cerevisiae model contains 22 metabolites and 24 reactions, 

while the E. coli model contains 18 metabolites and 48 reactions. We used the previously 

published kinetic equations and parameters for these systems; in both cases, the 

mathematical forms of the rate expressions include Michaelis-Menten, Hill, and mass 

action kinetics. Data for both biological systems were produced by reconstructing the 

ODE models in MATLAB and simulating the S. cerevisiae and E. coli models over 60 

seconds and 10 seconds, respectively.  

In the S. cerevisiae model, the fluxes for glucose mixed flow to extracellular 

medium and cyanide flow are constant and not controlled by any metabolites (Table 1). 

Likewise, in the E. coli model, the fluxes for glucose kinetics, murein synthesis, 

tryptophan synthesis, and methionine synthesis are constant and not controlled by any 

metabolites (Table 2). As in the synthetic models, both the S. cerevisiae and E. coli 

models include reactions controlled by one, two, or three metabolites, although they also 

have reactions controlled by four metabolites. Table 3 summarizes the number of each 

type of interaction in each of the four systems. Because both biological models have 

significantly more metabolites and reactions than the synthetic models, the number of 

possible interactions that need to be considered is substantially greater. 

 

Table 1: List of controller metabolites and target fluxes in S. cerevisiae model. 

Controller metabolite(s) Target flux 

N/A Glucose mixed flow to extracellular 

medium 

Extracellular glucose Glucose uptake 

Cytosolic glucose, ATP Hexokinase 

Glucose-6-phosphate, fructose-6-

phosphate 

Phosphoglucoisomerase 

ATP, fructose-6-phosphate, AMP Phosphofructokinase 
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Table 1 (continued) 

Fructose 1,6-bisphosphate, 

glyceraldehyde 3-phosphate, 

dihydroxyacetone phosphate 

Aldolase 

Dihydroxyacetone phosphate, 

glyceraldehyde 3-phosphate 

Triosephosphate isomerase 

Glucose-6-Phosphate, 1,3-

bisphosphoglycerate, NADH 

Glyceraldehyde 3-phosphate 

dehydrogenase 

ADP, 1,3-bisphosphoglycerate, 

phosphoenolpyruvate, ATP 

Phosphoenolpyruvate synthesis 

ADP, phosphoenolpyruvate Pyruvate kinase 

Pyruvate Pyruvate decarboxylase 

NADH, acetaldehyde Alcohol dehydrogenase 

Ethanol, extracellular ethanol Ethanol out 

Extracellular ethanol Ethanol flow 

Dihydroxyacetone phosphate, NADH, 

NAD 

Glycerol synthesis 

Glycerol Glycerol out 

Glycerol, extracellular glycerol Glycerol flow 

Acetaldehyde, extracellular acetaldehyde Acetaldehyde out 

Extracellular acetaldehyde Acetaldehyde flow 

Extracellular acetaldehyde, extracellular 

cyanide 

Cyanide-acetaldehyde flow 

N/A Cyanide flow 

ATP, glucose-6-phosphate Storage 

ATP ATP consumption 

AMP, ADP, ATP Adenylate kinase 

 

Table 2: List of controller metabolites and target fluxes in E. coli model. 

Controller metabolite(s) Target flux 

Extracellular glucose Extracellular glucose kinetics 

Glucose-6-phosphate, pyruvate, 

extracellular glucose, 

phosphoenolpyruvate 

Phosphotransferase system 

Fructose-6-phosphate, 6-

phosphogluconate, glucose-6-phosphate 

Glucose-6-phosphate isomerase 

Glucose-1-phosphate, glucose-6-

phosphate 

Phosphoglucomutase 

Glucose-6-phosphate Glucose-6-phosphate dehydrogenase 

Phosphoenolpyruvate, fructose-6-

phosphate 

Phosphofructokinase 

Erythrose-4-phosphate, fructose-6-

phosphate, glyceraldehyde-3-phosphate, 

sedoheptulose-7-phosphate 

Transaldolase 
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Table 2 (continued) 

Glyceraldehyde-3-phosphate, 

sedoheptulose-7-phosphate, ribose-5-

phosphate, xylulose-5-phosphate 

Transketolase a 

Fructose-6-phosphate, glyceraldehyde-3-

phosphate, erythrose-4-phosphate, 

xylulose-5-phosphate 

Transketolase b 

N/A Mureine synthesis 

Dihydroxyacetonephosphate, 

glyceraldehyde-3-phosphate, fructose-1,6-

bisphosphate 

Aldolase 

1,3-diphosphosphoglycerate, 

glyceraldehyde-3-phosphate 

Glyceraldehyde-3-phosphate 

dehydrogenase 

Glyceraldehyde-3-phosphate, 

dihydroxyacetonephosphate 

Triosephosphate isomerase 

N/A Tryptophan synthesis 

Dihydroxyacetonephosphate Glycerol-3-phosphate dehydrogenase 

3-Phosphoglycerate, 1,3-

diphosphosphoglycerate 

Phosphoglycerate kinase 

3-Phosphoglycerate Serine synthesis 

2-Phosphoglycerate, 3-phosphoglycerate Phosphoglycerate mutase 

Phosphoenolpyruvate , 2-

phosphoglycerate 

Enolase 

Fructose-1,6-bisphosphate, 

phosphoenolpyruvate 

Pyruvate kinase 

Fructose-1,6-bisphosphate, 

phosphoenolpyruvate 

PEP carboxylase 

Phosphoenolpyruvate Synthesis 1 

Pyruvate Synthesis 2 

Erythrose-4-phosphate, 

phosphoenolpyruvate 

DAHP synthesis 

Pyruvate Pyruvate dehydrogenase 

N/A Methionine synthesis 

6-Phosphogluconate 6-Phosphogluconate dehydrogenase 

Ribose-5-phosphate, ribulose-5-phosphate Ribose-phosphate isomerase 

Xylulose-5-phosphate, ribulose-5-

phosphate 

Ribulose-phosphate epimerase 

Ribose-5-phosphate Ribose phosphate pyrophosphokinase 

Fructose-1,6-bisphosphate, glucose-1-

phosphate 

Glucose-1-phosphate adenyltransferase 

Glucose-6-phosphate G6P degradation 

Fructose-6-phosphate F6P degradation 

Fructose-1,6-bisphosphate FDP degradation 

Glyceraldehyde-3-phosphate GAP degradation 

Dihydroxyacetonephosphate DHAP degradation 
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Table 2 (continued) 

1,3-diphosphosphoglycerate PGP degradation 

3-phosphoglycerate PG3 degradation 

2-phosphoglycerate PG2 degradation 

Phosphoenolpyruvate PEP degradation 

Pyruvate Pyruvate dilution 

6-phosphogluconate PG dilution 

Ribulose-5-phosphate Ribu5P dilution 

Xylulose-5-phosphate XYL5P dilution 

Sedoheptulose-7-phosphate SED7P dilution 

Ribose-5-phosphate Rib5P dilution 

Erythrose-4-phosphate E4P dilution 

Glucose-1-phosphate G1P dilution 

 

Table 3: The number of n-controller metabolite interactions that exist in or are 

possible for each model. 

For possible interactions, the first number assumes that regulatory interactions are 

correctly identified at each step of the framework and are removed from consideration for 

higher-order interactions. The number in parentheses is the total number of possible 

interactions if a stepwise framework were not used, illustrating the significant decrease in 

the number of interactions to be assessed in a stepwise framework. 
 Smaller Synthetic 

Model 

Bigger Synthetic 

Model 

S. cerevisiae E. coli 

# of 1-controller 

interactions 
1 3 5 25 

# of possible 1-

controller 

interactions 

5 9 12 39 

# of 2-controller 

interactions 
2 3 10 13 

# of possible 2-

controller 

interactions 

20 (25) 54 (81) 157 (262) 243 (668) 

# of 3-controller 

interactions 
2 3 5 2 

# of possible 3-

controller 

interactions 

20 (50) 108 (324) 520 (2720) 336 (5384) 

# of 4-controller 

interactions 
N/A N/A 2 4 

# of possible 4-

controller 

interactions 

N/A N/A 380 (17860) 480 (27120) 
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2.2.3 Autogenerated training data 

 Machine learning models must be trained using data that are broadly 

representative of the input data they are likely to encounter, which often entails using 

datasets that are as large as possible. In metabolism, there is a wide variety of metabolic 

reactions with disparate mechanisms and functional behaviors (e.g. bi-bi sequential 

reactions vs. ping-pong reactions)84 or that are controlled by a different number of 

metabolites. However, appropriate training data for many of these possible situations are 

sometimes not available at all, let alone in sufficient quantity to enable machine learning 

model training. Accordingly, we chose to generate hundreds of artificial interactions to 

use as training data in an approach we refer to as “autogeneration”. While the practice of 

creating artificial training data has been used in other machine learning contexts before85-

88, to the best of our knowledge it has not been used in producing metabolite-dependent 

regulatory interaction data.  

For the training datasets in each step (meaning for the 1-controller, 2-controller, 

and 3-controller metabolite interactions), we created 300 autogenerated interactions, each 

with 15 different initial conditions. The 300 interactions included a mixture of samples 

that resembled true positive and true negative interactions. To create the time course data 

for each controller metabolite, concentration profiles were created from damped sine 

wave functions with randomized parameters (Equation 2). xi is the concentration of 

controller metabolite i, t is the simulation time, and A, λ, ω, φ, are the amplitude, decay 

constant, angular frequency, and phase angle of a damped sine wave: 

 

𝑥𝑖 = 𝐴𝑖𝑒−𝜆𝑖𝑡(cos(𝜔𝑖𝑡 + 𝜑𝑖) + sin(𝜔𝑖𝑡 + 𝜑𝑖))  (Equation 2) 
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 These concentration profiles were then used as input into BST equations to 

calculate dynamic flux profiles (Equation 3). BST is an ordinary differential equation-

based modeling framework for metabolic systems that uses power-law kinetics and is 

generalizable to many types of metabolic reactions83. Each BST equation also was 

assigned randomized parameters. v represents the target reaction flux (rate), xi is the 

concentration of controller metabolite i, n is the number of controller metabolites that 

regulate the target flux, and α and β are the randomly assigned BST parameters. 

 

𝑣 = 𝛼 ∏ 𝑥𝑖
𝛽𝑖𝑛

𝑖=1   (Equation 3) 

 

After generating both controller metabolite and target flux data, interactions were 

randomly assigned as either true positives or true negatives. If the interaction was labeled 

as a true positive, the correct sets of simulated controller metabolite profiles and 

corresponding calculated target flux profiles were used when calculating machine 

learning model features. However, if the interaction was labeled as a true negative, 

another set of metabolite concentration time course profiles would be generated from new 

damped sine wave functions and be used with the original target flux data to calculate 

features. Because these new pseudo-controller metabolites were not used in the 

calculation of the target flux data, there should be minimal relationship between the 

metabolites and the target flux, yielding a “true negative” data point. 

  To emulate the percentage of true positive interactions in the models tested in this 

work, of the 300 interactions in each step, 40%, 5%, and 5% were randomly assigned as 

existing interactions in the one-, two-, and three-controller interaction inference steps, 
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respectively. Changes to these percentages are expected to shift the sensitivity and 

specificity of the framework, so it is important to base the training percentages on what is 

expected to be seen in the testing data based on existing biochemical knowledge. 

This approach for autogenerating training data aims to circumvent the 

requirement for large dynamic metabolomics and fluxomics datasets to train the machine 

learning framework, which are currently not widely available on the scale that would be 

required. Because this autogeneration approach is independent of SCOUR, it can possibly 

be used for other computational methods that require an abundance of metabolic data.  

 

2.2.4 Noise-added data 

To generate noisy data that are more representative of what is expected to be 

acquired experimentally, we used two different sampling frequencies and two 

coefficients of variation (CoV) for randomly-added noise, for a total of four conditions. 

Sampling frequencies of 50 and 15 timepoints (nT) and CoVs of 0.05 and 0.15 were used, 

where a higher CoV represents more noise (experimental error). The number of 

timepoints and amount of added noise are reasonable values for what one could possibly 

expect from mass spectrometry data for metabolomics or fluxomics. Starting with 

noiseless data, each metabolite and flux value in each time course was replaced with a 

random value drawn from 𝑁𝑖,𝑘 ~ (𝑦𝑖(𝑡𝑘),𝐶𝑜𝑉∙𝑦𝑖(𝑡𝑘)), where 𝑦𝑖(𝑡𝑘) is the value of species 

(metabolite or flux) 𝑖 at timepoint 𝑘. For each timepoint, three noisy data values were 

generated to resemble triplicate samples, which is a common practice in metabolomics 

and fluxomics experiments. 
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2.2.5 Data pre-processing 

 For noisy data, we applied two different pre-processing steps to the data. For the 

one-controller metabolite interaction inference step of the framework, we used the 

median sample of the triplicate noisy data to calculate the features in the training and 

testing sets. For the two- and three-controller metabolite interaction inference steps, 

instead of using the medians, a moving Gaussian filter was applied to smooth the 

triplicate noisy data before calculating their features. The window size of the filter was 

chosen to be ¼ of the total simulation time, which was found to smooth the data without 

overfitting to the noise itself. While smoothing the noisy data for two- and three-

controller metabolite interactions led to an increase in SCOUR’s performance, it was 

detrimental for one-controller metabolite interactions. We found that a few of the one-

controller metabolite interaction features were more sensitive to the smoothed data than 

the noisy median data and would cause greater variability in SCOUR’s performance 

across repetitions.  

 

2.2.6 Features 

Each step of the framework contains different “features” (Table 4) used to predict 

whether a particular interaction is likely to be correct. These “features” are scalar-valued 

outputs of functions that quantify characteristics of concentration and flux profiles and 

the relationships between different profiles, which may thus indicate whether a given 

metabolite or set of metabolites regulates a given flux.  Different features were used for 

the prediction of interactions controlled by different numbers of metabolites (i.e., one-

controller vs. two-controller vs. three-controller metabolite interactions). This allows the 
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features to be customized to specific interaction types (and avoids the requirement that 

they must be valid or useful for all interaction types), which is expected to increase 

SCOUR’s overall accuracy compared to using the same features for all steps. Features 

were designed using biochemical insight into how metabolites are known to interact with 

enzymes and how these interactions would manifest in concentration and flux profile 

data. For example, for the one-controller metabolite interaction step, the Spearman 

correlation between fluxes and metabolites was used as a feature, as reaction fluxes are 

expected to be highly (though not necessarily linearly) correlated with the metabolites 

that control them. Additionally, features were created based on the expectation that for 

every set of metabolites that completely defines an output flux, each possible set of 

metabolite input concentrations can only yield one single output of flux reaction rate. A 

list and description of all features used in SCOUR can be found in Table 4. 

 

Table 4: List of features for each step of the framework 
1-controller metabolite interaction features 

Feature name Description Reasoning for feature 

Correlation Spearman correlation between controller 

metabolite and target flux. 

If a reaction flux is controlled by a 

single metabolite (most likely a mass 

action interaction), the Spearman 

correlation should be close to +1. 

Curve fit A second-degree polynomial is fit to the 

controller metabolite vs. target flux data 

and the adjusted R2 value (adjusted for 

the number of coefficients in the 

polynomial model) is calculated. 

A simple polynomial curve should fit 

the data reasonably well if a reaction is 

controlled by a single metabolite (e.g. 

if the data exhibits a Michaelis-

Menten saturation curve). 

Flux prediction 2/3 of the available controller metabolite 

data and target flux data are randomly 

selected to train a kNN regression 

model, with the flux data acting as the 

dependent variable. The remaining 1/3 

of controller metabolite data is used 

with the kNN model to predict the 

remaining flux values and the prediction 

error is calculated. This process is 

repeated 3 times and the mean of the 

prediction errors is taken. 

It is likely easier to make predictions 

(i.e. lower prediction error) if the 

controller metabolite and target flux 

belong to an existing interaction in the 

system and no other metabolites truly 

regulate the target flux. 
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Table 4 (continued) 
CoV of data The average CoV of the target flux is 

calculated at 10 evenly-spaced 

individual concentrations within the 

range of the controller metabolite. 

Because flux data may not be sampled 

at these evenly-spaced concentrations, 

flux data are linearly interpolated at 

these concentrations using the closest 

higher and lower concentrations with 

sampled flux data. 

The CoV of the target flux should be 

low at each metabolite concentration 

for a one-controller metabolite 

interaction because there should be a 

single flux value for every 

concentration value. 

2-controller metabolite interaction features 

Feature name Description Reasoning for feature 

Functionality Plot the two putative controller 

metabolites against each other for all 15 

datasets produced from different initial 

conditions. Identify where the two 

controller metabolite concentrations are 

approximately equal to each other in 

two of the datasets by finding where the 

two datasets intersect with each other on 

the plot. This is accomplished by using 

the InterX function in MATLAB89 that 

uses vectorization to determine 

intersection points between datasets. At 

these intersection points, linearly 

interpolate the flux data for each of the 

two datasets (using the 

scatteredInterpolant function in 

MATLAB for 3-D interpolation), 

calculate the difference of these two 

interpolated target flux values, and 

divide by the mean of the flux values to 

normalize. For all intersection points 

found, take the mean of all normalized 

differences between interpolated target 

fluxes. 

For every input of controller 

metabolites, there should be a single 

output for the target flux (this is the 

definition of a mathematical function) 

if those metabolites are the only 

variables that interact with the 

reaction. 

Surface fit Fit a plane surface to the data of the two 

controller metabolite concentrations and 

the target flux and calculate the root 

mean square error of the fit against the 

data. 

Because an existing interaction must 

maintain “functionality,” the controller 

metabolite and target flux data should 

form some sort of surface. There will 

likely be a better fit when fitting a 

plane to data from an existing 

interaction than data from a non-

existing interaction. 

Flux prediction Same as flux prediction feature for 1-

controller metabolite interactions, 

except two metabolites are used to train 

and test the kNN model.  

Same as flux prediction feature for 1-

controller metabolite interactions. 
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Table 4 (continued) 
Correlation with 

one metabolite 

constant 

Plot one of the putative controller 

metabolites (x-axis) against the target 

flux (y-axis) for each of the fifteen 

datasets. Next, plot ten vertical lines that 

are evenly-spaced within the range of 

the controller metabolite that represent 

ten constant concentrations. For one 

vertical line, identify if and where the 

line intersects with the fifteen data sets 

using the InterX function and linearly 

interpolate flux data at these intersection 

points using the closest higher and lower 

concentrations with sampled flux data. 

Calculate the Spearman correlation 

between the second controller 

metabolite and interpolated target flux at 

these intersection points where the first 

controller metabolite is constant. Repeat 

for each of the ten vertical lines and 

calculate the mean of all correlations. 

Switch which metabolite is held 

constant and repeat the process. Take 

the lesser of the absolute values of the 

two mean correlations. 

The correlation between one controller 

metabolite and target flux should be 

consistently close to +1 (activation) or 

-1 (inhibition) for any constant 

concentration value for the second 

metabolite. This assumes no high 

concentration effects, such as substrate 

inhibition. The lesser of the two 

absolute mean correlations is taken as 

it is the worst performing. 

Curve fit with one 

metabolite constant 

Plot one of the putative controller 

metabolites (x-axis) against the target 

flux (y-axis) for each of the fifteen 

datasets. Next, plot ten vertical lines that 

are evenly-spaced within the range of 

the controller metabolite that represent 

ten constant concentrations. For one 

vertical line, identify if and where the 

line intersects with the fifteen data sets 

using the InterX function and linearly 

interpolate flux data at these intersection 

points using the closest higher and lower 

concentrations with sampled flux data. 

Fit a second-order polynomial to the 

second controller metabolite and target 

flux data at these intersection points and 

calculate the root mean square error 

between the fit and the data. Repeat for 

each of the ten vertical lines and 

calculate the mean of all errors. Switch 

which metabolite is held constant and 

repeat the process. Take the greater of 

the absolute values of the two mean 

errors. 

If one controller metabolite is 

constant, a simple polynomial on the 

second controller metabolite and target 

flux should fit well, similar to the 

curve fit feature for 1-controller 

metabolite interactions. The greater of 

the two absolute mean errors is taken 

as it is the worst performing. 
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Table 4 (continued) 
3-controller metabolite interaction features 

Feature name Description Reasoning for feature 

Hyperplane fit Fit a hyperplane to the data of the three 

controller metabolite concentrations and 

the target flux and calculate the root 

mean square error of the fit against the 

data. 

Same as surface fit feature for 2-

controller metabolite interactions. 

Functionality 

(percentage 

method)  

For any two datasets generated from 

different initial conditions, find 

concentrations where the three putative 

controller metabolites are within 5% 

(noiseless) or 10% (noisy) across 

datasets. Calculate the CoV of the target 

flux for the two datasets at these points. 

Same as functionality feature for 2-

controller metabolite interactions. 

Flux prediction Same as flux prediction feature for 1-

controller metabolite interactions, 

except three metabolites are used to 

train and test the kNN model.  

Same as flux prediction feature for 1-

controller metabolite interactions. 

Functionality 

(rounding method) 

For any two datasets generated from 

different initial conditions, find 

concentrations where the three putative 

controller metabolites are equal across 

datasets after rounding to the second 

decimal place. Calculate the percent of 

target flux values that are equal (within 

0.002 error). The majority of 

metabolites in this work had mean 

concentrations on the order of 10-1 to 

101, and the majority of fluxes had mean 

rates on the order of 10-2 to 102, making 

the chosen rounding precision and error 

threshold reasonable for this feature. 

Same as functionality feature for 2-

controller metabolite interactions. In 

this feature, the parameters used to 

determine equivalence (i.e. rounding 

precision and error threshold) are fixed 

and are not proportional to the 

concentration or flux data used, unlike 

in the percentage method. This 

difference allows the rounding method 

to be more sensitive when determining 

equivalence for concentration or flux 

data that have larger orders of 

magnitude (i.e. greater concentrations 

and fluxes will be considered equal in 

fewer cases than in the percentage 

method; if they are considered equal, it 

will be with higher confidence). The 

number of decimal places and error 

bounds can be adjusted depending on 

the user’s preference for sensitivity. 

Correlation with 

two metabolites 

constant 

Same as correlation with one metabolite 

constant, except two metabolites are 

held constant and the Spearman 

correlation between the third metabolite 

and target flux is calculated. 

Same as correlation with one 

metabolite constant. 

 

2.2.7 Scaling of feature matrices 

When assessing SCOUR’s performance on noiseless data, we found that the 

feature matrices did not require any scaling because the range of values across features 

was relatively consistent due to the lack of outliers caused by noise. However, scaling the 
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training and testing feature matrices significantly improved SCOUR’s performance on 

noisy datasets. Each feature in the feature matrices for two- and three-controller 

metabolites were scaled between 0 and 1. When scaling data in the one-controller 

metabolite feature matrices between 0 and 1, we found poor performance due to a high 

sensitivity to outliers in a few of the one-controller metabolite features. To solve this 

problem, we scaled the feature matrices for one-controller metabolite interactions so that 

the 20th and 80th percentiles of the data were scaled between 0 and 1, which diminished 

the effect of outliers on the machine learning algorithms. This technique is called robust 

scaling90. 

 

2.2.8 Machine learning stacking 

 Stacking is a technique used in machine learning to aggregate predictions made 

by multiple classification or regression algorithms91. The idea behind stacking is that 

some algorithms will be able to classify certain samples better than others, such that by 

combining information from multiple algorithms one can more accurately classify 

samples overall. In SCOUR, we used four machine learning algorithms in a stacking 

model. 

 To train the four algorithms in the first layer of the stacking process, an initial set 

of autogenerated data with known training labels was used for each algorithm. To train 

the metamodel in the second layer of the stacking process, a second set of autogenerated 

data  was passed through the previously trained first layer models and the prediction 

outputs from the four original machine learning algorithms were used as inputs to train 

the metamodel, along with the known training labels of the second set of autogenerated 
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data. For this work, we chose to use a discriminant analysis classifier as the metamodel, 

as it was shown to perform well in consolidating information from the four algorithms in 

the first layer. A workflow of the stacking process is shown in Figure 4.  

  

 
Figure 4: Workflow of stacking process. 

After the feature matrix is calculated for all possible regulatory interactions, it is used on 

the first level of the stacking process as input for the four machine learning algorithms. 

The four resulting predictions are then used in the second level metamodel to produce a 

final prediction output for the framework. 

 

2.2.9 Machine learning algorithms 

 The four machine learning algorithms used in the stacking model are random 

forest92, k-nearest neighbors (kNN)93, 94, shallow neural networks95, and discriminant 

analysis96. Each of these algorithms are some of the most robust and commonly used 

machine learning approaches, but they are all fundamentally very different from one 

another. In SCOUR, we use kNN and discriminant analysis as binary classifiers: 

algorithms that can predict only two discrete labels. Random forest and neural networks 

are used as regression algorithms, where both predict continuous values. While most of 

these machine learning methods can be used as either discrete classifiers or regression 

models, we decided to have a mixture of these two types of algorithms because we 

believe that using a more diverse class of algorithms will enhance the stacking model and 
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prevent any potential bias toward algorithms that are very similar to one another. In the 

stacking process, the predictions from the four models were used as the input for a 

secondary metamodel (another discriminant analysis classifier) to give a final 

classification output for each regulatory interaction that was tested. 

 

2.2.10 Stepwise approach 

 SCOUR uses a stepwise approach to identify different types of regulatory 

interactions at each step, beginning with the identification of one-controller metabolite 

interactions. First, two training datasets that consist of true positive (controlled by a 

single metabolite) and true negative (controlled by multiple metabolites) interactions are 

autogenerated for the two levels of the stacking model. The features described in Table 4 

are calculated for each interaction in the first autogenerated dataset, which are used to 

train the first level of the stacking model. Next, the second level of the stacking model is 

trained using the feature matrix calculated from the second autogenerated dataset. 

Finally, the completely trained stacking model predicts whether or not each interaction in 

the testing dataset (comprised of the possible one-controller metabolite interactions in the 

system of interest) is controlled by a single metabolite. This process is repeated for 

predicting two- and three-controller metabolite interactions.  

This stepwise approach has two key advantages. First, it allows for completely 

independent classification models and features that can be crafted for specifically 

identifying reactions that are controlled by one, two, or three metabolites. We found that 

developing a one-step platform for predicting multiple classes (i.e. reactions controlled 

by different numbers of metabolites) at once led to worse performance even when using 
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machine learning algorithms, such as random forest and neural networks, that can be 

tailored toward multiclass classification. Multiclass classification may have performed 

well if SCOUR was only classifying if a reaction is controlled by one, two, or three 

metabolites. However, because SCOUR is also trying to predict the exact controller 

metabolites that interact with a reaction flux, there is an additional layer of complexity 

that is easier to address with multiple binary classification models. The second advantage 

of using a stepwise approach is that after each step, fluxes whose regulatory status has 

already been identified are removed from consideration in the next step so that there are 

fewer interactions to be tested by the machine learning algorithms. This reduces the 

computation time of the entire stepwise process, reduces the chances of false positives, 

and allows subsequent steps and features to be more simply designed under the 

assumption that lower-order regulatory interactions will not be present in later steps. 

However, these advantages are at the risk of removing fluxes at a step earlier than when 

their true regulatory status could be identified. A comparison of the number of 

interactions that need to be tested whether or not the stepwise framework is used for each 

of the evaluated models can be found in Table 3. A schematic of SCOUR’s workflow is 

shown in Figure 5. 
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Figure 5: Workflow of stepwise machine learning framework for identifying one-, 

two-, and three-controller metabolite interactions. 

Blue circles and arrows represent metabolites and the fluxes they might interact with, 

respectively, in the training set. Orange circles and arrows represent metabolites and the 

fluxes they might interact with, respectively, in the testing set. In each step, the training 

set is used to train the machine learning classifier for fluxes with a specific number of 

metabolite controllers, which is then applied to the testing set to predict which fluxes are 

in that category. Between each step of the workflow, fluxes that have been positively 

identified are removed from further consideration in the test set. 



40 

 

 

2.2.11 Framework performance metrics 

 To assess the performance of our framework in identifying different types of 

regulatory interactions, we evaluated four different metrics: accuracy, sensitivity, 

specificity, and positive predictive value (PPV). Accuracy is the percent of candidate 

regulatory interactions that are identified correctly as existing or not existing in a model. 

While accuracy can be a good metric if the classes (i.e. candidate interactions that are 

truly in the model vs. candidate interactions that are not in the model) are well-balanced, 

this is not the case for combinatorial consideration of potential metabolic regulatory 

interactions: there are many more candidate metabolite and reaction flux combinations 

than there are actual regulatory interactions in a given biological system. Sensitivity and 

specificity separate accuracy into two metrics that measure, respectively, the percent of 

positives (i.e. true regulatory interactions) that are identified correctly and percent of 

negatives (i.e. candidate regulatory interactions that are not actually in the model) that are 

identified correctly. PPV is the percentage of interactions predicted by the model that are 

true positives, an important metric to consider when one plans on experimental validation 

of predictions because it indicates how much effort is typically required for the validation 

of every newly discovered interaction. Exceedingly low PPVs are undesirable for 

predictions that are difficult to experimentally test, including metabolite-dependent 

regulation of reaction rates, because they signify that a large number of predicted 

interactions must be tested with these difficult experimental methods in order to find any 

true, validated interactions.   
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2.3 Results 

2.3.1 Performance on noiseless data  

When evaluating SCOUR on noiseless data, we found good overall predictive 

accuracy for both synthetic models (Figure 6A and Figure 6B). We trained SCOUR on 30 

independent sets of noiseless autogenerated data to assess the sensitivity of the 

framework to different sets of autogenerated training data. The average sensitivities and 

specificities for all steps in SCOUR were above 88% for both models. PPVs were above 

77% for predicted one- and two-controller metabolite interactions, and above 58% for 

predicted three-controller metabolite interactions.  

 We found similar results when testing SCOUR on noiseless data simulated from 

the E. coli and S. cerevisiae systems (Figure 6C and Figure 6D). As in the synthetic 

models, the PPV for both of these biological models decreased as the number of 

controller metabolites increased, though in a steeper fashion likely due to the increased 

complexity of these systems. The accuracy, sensitivity, and specificity in both biological 

models were still above 71% for all steps, and the PPVs for one- and two-controller 

metabolite interactions were all above 32%, despite the increase in model complexity. 

The low PPV for identification of three-controller metabolite interactions for both 

biological models (< 8%) despite high specificity (> 85%) was attributable to the highly 

imbalanced nature of the testing data. Out of the large number of candidate three-

controller metabolite regulatory interactions that must be classified (Table 3), only a few 

are true positives and consequently there is an increased likelihood for false positive 

predictions. We note the large standard error of the mean for sensitivity in the E. coli 

model when identifying three-controller metabolite interactions. This is due to SCOUR 
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removing the fluxes of the two true positive interactions in a previous step, which leads to 

the sensitivity not being calculated in several of the repetitions (due to the absence of any 

true positives or false negatives). 

 

   
Figure 6: SCOUR performance on synthetic and biological models using noiseless 

training and test data. 

Bar graphs for accuracy, sensitivity, specificity, and PPV for each step of SCOUR in 

each tested model. Error bars represent the standard error of the mean (n = 30 from 

independent autogenerated training replicates). 

 

 

2.3.2 Performance on noisy data 

While using noiseless data gives a sense for the framework’s performance under 

ideal conditions, the realities of metabolomic and fluxomic experimental limitations can 
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lead to significant deviation from these idealized assumptions. To assess SCOUR’s 

performance under more biologically relevant conditions, we examined two factors that 

need to be considered when using real metabolomics and fluxomics data: decreased 

experimental sampling frequency (and thus less information content to enable 

identification of true regulatory interactions) and increased experimental measurement 

noise. To give SCOUR a baseline performance level to compare to, we also created a 

classifier that randomly predicted whether a metabolite-flux interaction was a true 

positive or true negative interaction and used this to calculate a PPV at each step. Each 

interaction had a 50% chance of being classified as either a true positive or true negative 

in each step of the framework. For this random predictor, we assumed that the correct 

reaction fluxes were removed at each step, giving this classifier an advantage over our 

framework by greatly reducing the number of possible false positive interactions. 

Assessment of SCOUR’s performance on noisy data from the synthetic models 

(Figure 7A through Figure 7F) yielded similar trends to the results from noiseless data 

(Figure 6A and Figure 6B). For both decreased sampling frequency and increased 

experimental noise, SCOUR’s overall accuracy unsurprisingly decreased, but still 

allowed for effective identification of many regulatory interactions in each model. In both 

synthetic models, there was an expected decrease in sensitivity and PPV with decreasing 

sampling frequency or increasing noise. As in the noiseless case, the PPV decreased for 

fluxes with more controller metabolites due to the increase in candidate regulatory 

interactions (and thus, an increase in possible false positive predictions) tested at each 

stage. In the most experimentally realistic scenario (nT = 15, CoV = 0.15), SCOUR still 

yielded PPVs that were acceptable for lab validation when classifying one- and two-
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controller metabolite interactions (> 59% and > 18%, respectively). The mean PPVs for 

one- and two-controller metabolite interactions were also better than the random 

predictor in both synthetic models across all conditions and SCOUR outperformed the 

random predictor in most cases when classifying three-controller metabolite interactions. 

 The results from testing on biological models with noisy data (Figure 7G through 

Figure 7L) were similar to those from the synthetic models (Figure 7A through Figure 

7F). For both the S. cerevisiae and E. coli models, the PPV was fairly consistent (with 

slight decreases) for any given interaction type across the increasingly challenging noisy 

conditions, while accuracy, sensitivity, and specificity sometimes exhibited slightly more 

variability across those conditions. For the S. cerevisiae model, the PPV remained high 

(> 69% on average) in all conditions for identification of one-controller metabolite 

interactions and was above 25% for identification of two-controller metabolite 

interactions. These PPVs for one- and two-controller metabolite interactions are 

sufficiently high enough if one wanted to experimentally validate these predictions to 

identify previously unknown interactions. For three-controller metabolite interactions, the 

PPV was below 12% for all conditions, which is not ideal from the standpoint of 

experimental practicality. In the E. coli model, the accuracy, sensitivity, specificity, and 

PPV were high for one-controller metabolite interactions in all conditions (> 92%), but 

the PPV dropped to less than 13% for two-controller metabolite interactions and was 

essentially 0% for three-controller metabolites (and a large standard error of the mean for 

sensitivity was observed, as in the noiseless condition in Figure 6D). This would make it 

challenging to experimentally validate the E. coli predictions for two- and three-

controller metabolite interactions without a guided high-throughput approach. 
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Nevertheless, the PPVs for both biological systems when using SCOUR were on average 

better than the PPVs of the random predictor for one- and two-controller metabolite 

interactions for all conditions. 

    

 
Figure 7: SCOUR performance on synthetic and biological models using noisy and 

low sampling frequency training and test data. 

Solid lines represent accuracy, sensitivity, specificty, and PPV performance of SCOUR 

on each model for each step of the framework. Dashed lines represent the PPV if 

interactions were randomly classified. Error bars represent the standard error of the mean. 

(n = 30 from independent autogenerated training replicates). 

 

 

2.4 Discussion 

Our results indicate that SCOUR is a promising route for in silico prediction of 

metabolite-dependent regulation of metabolic fluxes using metabolomics and fluxomics 

data. On noiseless data, SCOUR predicts one- and two-controller regulatory interactions 

with high PPV in both synthetic and biological models, with three-controller interactions 
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also predicted extremely well in some systems. While the use of noisy data leads to an 

expected drop in performance, SCOUR still provides extremely high PPV for one-

controller interactions in all systems and high (experimentally useful) PPV for the 

synthetic models and the S. cerevisiae model when predicting two-controller metabolite 

interactions. SCOUR’s PPVs for these two steps greatly outperformed the PPVs of a 

random classifier in almost all cases. PPVs for three-controller metabolite interactions 

remained useful for the synthetic models but pushed the bounds of practical utility in the 

S. cerevisiae and E. coli models, likely attributable in large part to the combinatorial 

growth of the number of candidate interactions that must be tested and thus the 

concomitant growth in the number of false positives. Regardless of whether the three-

controller interaction predictions are sufficient for experimental validation, the PPV in 

the S. cerevisiae model is significantly greater than the PPV for random classification for 

all noisy conditions except for the lowest sampling frequency and highest noise case 

(Figure 8). This suggests that SCOUR would still be helpful for identifying these types of 

interactions compared to indiscriminately testing all combinations of interactions as high-

throughput guided experimental approaches are developed. 
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Figure 8: SCOUR’s PPV for 3-controller metabolite interaction predictions is 

significantly greater than a random classifier. 

While SCOUR yields low PPVs in the S. cerevisiae model for 3-controller metabolite 

interactions, these results are significantly better than random classification of 3-

controller metabolite interactions for all conditions except for the case with the fewest 

timepoints and most noise (nT = 15, CoV = 0.15). We used a Wilcoxon rank-sum test 

(alpha = 0.05) to assess significance, as we found the distributions of the PPVs from 

SCOUR were not normal when using a Kolmogorov-Smirnov test (alpha = 0.05), except 

for the nT = 50, CoV = 0.05 condition. With appropriate guided high-throughput 

methods, SCOUR’s predictions could still be useful for identifying these types of 

reactions. 

 

 We believe the unusually sharp decrease in PPV for the E. coli model between the 

one- and two-controller interaction predictions is largely attributable to two reasons. 

First, the E. coli model contains three two-controller metabolite interactions where the 

two controller metabolites are highly correlated with each other (> 99% correlation; 
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Figure 9). This presents an identifiability problem, with it being extremely difficult to 

decouple the effects of the two metabolites once even a small amount of noise is added to 

their data. This in turn affected the utility of several features in our machine learning 

models, which led to these three interactions rarely being identified by SCOUR and thus 

also led to lower sensitivities and PPVs. Second, as previously discussed, the large size of 

the E. coli model necessitates testing many candidate regulatory interactions. Even with 

relatively high specificity, the resulting false positives from these tests can suppress the 

PPV. This is a common problem found in other efforts to determine regulatory activity 

(or any work with imbalanced datasets), where one class (e.g. true negative interactions) 

significantly outnumbers the other class (e.g. true positive interactions)73. 
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Figure 9: The most common false negative two-controller metabolite interactions in 

the E. coli model. 

Three two-controller metabolite interactions were not correctly predicted across many 

conditions and replicates. The metabolites involved in these three interactions were 

highly correlated with each other, as indicated by these plots of noiseless concentration 

data for each of the pairs of metabolites. Each of the fifteen datasets with different initial 

conditions is represented by a different group of colored data. The scatter plots indicate 

extremely high correlation, which mitigated the utility of some of the features provided to 

the machine learning models (e.g. functionality and flux prediction). Inclusion of such 

interactions with highly correlated controller metabolites in the autogenerated data did 

not improve SCOUR’s ability to identify these metabolites, especially once noise was 

introduced into the measurements. 

 

 Throughout the evaluation of SCOUR, we have relied on PPV as a performance 

metric because it is a valuable indicator for whether or not the predictions by SCOUR are 

worth experimentally validating. F1 score is another performance metric that is calculated 

from PPV and sensitivity and it is often used for imbalanced datasets, such as those found 

in this work. When using F1 score, we found that SCOUR still outperformed random 

classification of one- and two-controller metabolite interactions in all models under all 

noisy conditions evaluated (Figure 10). For three-controller metabolite interactions, the 

difference in performance between SCOUR and random classification is less clear and 
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we would once again conclude that it would be difficult to recommend lab validation of 

the predictions for these types of interactions without high-throughput guided methods. 

While F1 score is an important evaluation metric and still verifies that SCOUR is a useful 

platform for identifying one- and two-controller metabolite interactions, we argue that 

PPV is a more important criterion in the context of finding new regulatory interactions 

because it indicates how many undiscovered interactions could be identified out of those 

predicted by SCOUR, regardless of how many true positive interactions exist. 

 

 
Figure 10: F1 scores for synthetic and biological models using noisy and low 

sampling frequency training and test data. 

Bold lines represent the average F1 scores of SCOUR and dashed lines represent the 

average F1 scores when randomly classifying interactions (n = 30 from independent 

autogenerated training replicates). Note that the F1 score does not exist when identifying 

three-controller metabolites in the E. coli model for two conditions (nT = 50, CoV = 0.05 

and nT = 15, CoV = 0.05) because SCOUR had removed both of the true positive three-

controller metabolite interactions in a previous step of the framework for all repetitions, 

meaning sensitivity (and therefore F1 score) could not be calculated.  



51 

 

 

 Perhaps the most striking feature of SCOUR is its use of the autogeneration of 

synthetic interactions for training data. Because machine learning models generally 

require large amounts of data for training, and because this scale of data is typically not 

available for metabolomics and fluxomics data, we created a method to automatically 

generate training data that are in some way representative of a wide variety of real 

biological interactions. While these autogenerated “interactions” may not perfectly 

recapitulate the data that result from real reactions, SCOUR’s success shows that this 

autogeneration method can sufficiently train machine learning algorithms to identify 

regulatory interactions in many different systems. Because dynamic metabolomics and 

especially fluxomics data are so expensive and difficult to acquire with current analytical 

tools, this autogeneration method may prove useful for other tasks that require large 

amounts of these types of data. 

 Although this proof-of-principle framework has demonstrated significant 

potential for identification of many different regulatory interactions, there are several 

potential future avenues to improve overall performance. We note that both training and 

testing on autogenerated data produces higher PPVs (Figure 11), which indicates that the 

autogenerated data do not perfectly capture biological interactions. Autogeneration of 

training data using Michaelis-Menten or other kinetics equations instead of BST 

equations could improve machine learning performance by generating training data that 

are more representative of the types of kinetics encountered in biological systems. While 

we chose to initially use BST equations for autogeneration based on their simplicity and 

utility in modeling many different systems97, there are undoubtedly limitations to their 

generalization. 
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Figure 11: SCOUR performance when training on autogenerated data and testing 

on autogenerated testing data. 

Testing data was autogenerated in a similar manner as the training data, but the 

percentage of true positive three-controller metabolite interactions in the testing set was 

set to 1% to more closely resemble the percentages found in the synthetic and biological 

models assessed (Note: training SCOUR with 1% instead of 5% true positives did not 

seem to help performance). The results when testing on autogenerated data were better 

than when testing on the synthetic or biological models, which is likely due to the testing 

data more closely resembling the training data because both datasets were autogenerated. 

Because we observe a similar decrease in PPV (when testing on the synthetic and 

biological systems) as the number of controller metabolites increases, this increase in 

performance when testing on autogenerated data is not likely completely due to 

overfitting, or else we would expect to see consistently high performance across all steps 

of the framework. The autogenerated training data has shown to be effective in 

classifying many interactions in the synthetic and biological models, and improvements 

to this autogeneration method or the integration of biological data will only lead to better 

performance with SCOUR. 

 

 

 Second, as in all machine learning approaches, there is room to improve the 

features used to help predict true interactions. We designed knowledge-driven features 

based on how metabolites interact with the reaction fluxes they control. Data-driven 

features derived from raw metabolomics and fluxomics data could be beneficial if there 

are sufficient data to drive the derivation of these features, including the underlying 

“ground truth” about whether a given interaction truly exists in a system. Such features 

could include graph theoretical characterization of the network topology of how 
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metabolites and fluxes are connected to each other, which has previously been used in 

metabolic contexts98, 99. However, an outstanding challenge will be how to include 

autogenerated data that are representative of these topological trends and capture the 

biological intricacies of metabolic systems, given that the autogenerated data are by 

definition synthetic and at least partly non-biological in nature. Additionally, machine 

learning algorithms for input to the stacking model beyond those tested here could also 

improve SCOUR’s performance. 

 Finally, the preprocessing of noisy experimental data undoubtedly can impact 

downstream analytical performance. While we settled on the median sample of the 

triplicate data when calculating features for one-controller metabolite interactions, and a 

Gaussian moving filter to smooth the data for two- and three-controller metabolite 

interactions, we also tried an average moving filter as well as an in-house smoothing 

approach 100. Because the framework mostly produces extremely accurate results on 

noiseless data for all models tested, an improved data pre-processing approach (e.g., 

filtering, normalization, scaling, or other smoothing methods101-103) could significantly 

increase classification performance.  

Notwithstanding these potential avenues for improvement, SCOUR is already a 

useful tool. At the very least, SCOUR can determine with high confidence reaction fluxes 

that are only controlled by a single metabolite, eliminating swaths of the metabolic 

network where metabolite-dependent regulation is unlikely to occur. However, SCOUR 

can also identify many more complex interactions, including possibly pointing towards 

reaction fluxes controlled by four or more metabolites (Figure 12).  
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Figure 12: Four-controller and higher-order metabolite regulatory interactions.  

While we only focus on classifying one-, two-, and three-controller metabolite 

interactions, SCOUR may still provide information about four-controller or higher-order 

metabolite interactions. After removing the fluxes with predicted regulatory relationships 

in the three described steps of the framework, we have found that there is some evidence 

supporting the identification of leftover fluxes in the A) S. cerevisiae and B) E. coli 

models as being controlled by four metabolites. The two models contain 2 and 4 four-

controller metabolite interactions (red bars), respectively. While the framework is unable 

to identify the controller metabolites that interact with these fluxes, being able to predict 

which fluxes are controlled by more than three metabolites may be useful for 

understanding reaction mechanisms. Further improvements to the accuracy in each of the 

steps of the framework would be required to ensure that the majority of fluxes that 

remain are truly controlled by four or more metabolites.  
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2.5 Conclusions 

SCOUR is a proof-of-principle for how metabolomics and fluxomics data can be 

leveraged with machine learning to find metabolite-dependent regulatory interactions; to 

our knowledge, this is the first reported example of such an approach. The identification 

of metabolite-dependent regulatory interactions has to date been critically hampered by 

experimental limitations in measuring and validating these interactions, making 

SCOUR’s predictions and triaging particularly valuable for such labor-intensive 

endeavors. Enabled by a method for autogenerating training data that reasonably mimic 

data from real biological systems, SCOUR circumvents the requirement for massive 

training sets that is typically associated with machine learning approaches. While 

metabolomics and fluxomics data are often collected at putative steady states, it is quite 

feasible to collect these data dynamically to leverage SCOUR’s potential for biological 

discovery. This means that as analytical methods for measuring metabolomics and 

fluxomics become cheaper and easier, and more data are available for analysis, SCOUR 

will be ready to take full advantage of these new datasets to discover biochemical 

regulatory interactions. 
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CHAPTER 3: Inferring Absolute Concentrations from Relative 

Abundances in Metabolomics Data 
 

 

 

3.1 Background 

Since its inception, metabolomics has been used in a wide variety of applications, 

including identification of disease biomarkers, disease diagnosis, and even drug 

development15, 104. While genomics, proteomics, and transcriptomics provide an upstream 

view of cellular function and information about what may occur in a system, 

metabolomics is a direct readout of a system’s current metabolic state and has emerged as 

an important area of study for understanding what is actually occurring in a system 105. 

As the systems-scale study of metabolites, metabolomics has the potential to be 

integrated into metabolic modeling frameworks to better understand how cellular systems 

function and react to endogenous or exogenous perturbations25. In order to develop 

accurate metabolic models, an ample amount of metabolomics data will be necessary.  

As described at the beginning of this thesis, researchers commonly use three 

analytical techniques to measure metabolomics: nuclear magnetic resonance (NMR) 

spectroscopy and gas and liquid chromatography-mass spectrometry (GC-MS and LC-

MS, respectively). Because NMR is significantly less sensitive than GC-MS and LC-MS, 

many researchers turn to mass spectrometry when measuring hundreds or thousands of 

metabolites at low concentrations in a single sample29. LC-MS is able to detect more 

metabolites than GC-MS and does not require any sample derivatization3, 27, but GC-MS 

still remains popular among researchers due to its relative inexpensiveness compared to 

other methods27, 106. 
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The greatest weakness of these mass spectrometry approaches is quantification107, 

as the metabolomics data resulting from using these instruments are typically relative 

abundances and not absolute concentrations. These relative abundances still allow for 

some types of analysis, including principal component analysis (PCA)108 and t-tests, as 

relative abundance measurements of the same analyte can be compared from sample to 

sample. However, comparing the relative abundances of different metabolites has no 

quantifiable meaning109. Even if two metabolites have similar absolute concentrations, 

their peaks on a chromatogram and therefore their relative abundances can be radically 

different because of how chemicals with different structures and properties are 

derivatized, ionized, or fragmented32, 110. Similarly, peaks with comparable intensities do 

not necessarily imply equal absolute concentrations. This precludes the use of raw 

metabolomics data in many computational tools used to study metabolism. For example, 

several metabolic modeling platforms, such as MetDFBA, TMFA, and LK-DFBA56, 111, 

112 can directly integrate metabolite data into their frameworks, but they all require 

absolute concentrations. 

Many researchers use chemical standards in mass spectrometry to quantify 

metabolites. However, these standards can be costly, time consuming to use, and 

unavailable for certain metabolites30-32. Using standards may only be feasible for 

quantifying a few metabolites, but for the purposes of untargeted metabolomics, where 

one attempts to measure all metabolites113, it quickly becomes infeasible. Untargeted 

metabolomics data is restricted to being used with only the most exploratory 

computational tools, like PCA, for semi-quantitative analysis109. A method for 

determining absolute concentrations without the use of chemical standards would expand 



58 

 

 

the usability of metabolomics data in computational tools and would be incredibly 

beneficial to the metabolomics community.  

As one of the most critical challenges preventing metabolomics from being more 

readily used in wider applications, there have previously been efforts attempting to 

quantify metabolomics data without chemical standards. Much of this work has focused 

on predicting ionization efficiencies of different chemicals, which is directly linked to the 

relative abundance output of a chromatogram in mass spectrometry. It has been shown 

that intrinsic thermodynamic properties, electrokinetic properties, structural properties, 

and solvent factors are all key factors that contribute to the prediction of ionization 

efficiencies114, 115. Recently, Liigand et al. developed a method for predicting ionization 

efficiencies using random forest machine learning116. Another recent approach is 

MetabQ, a calibration curve-free method for quantification of polar metabolites117. While 

MetabQ still requires chemical standards, they only need to be used once in the lifetime 

of an instrument to determine the relationship between relative abundances and absolute 

concentrations. 

 In this work, we have developed a new computational framework for inferring the 

most likely absolute concentrations from relative abundance metabolomics data for 

cellular metabolism, which we have named Metabolomics Prediction of Absolute 

Concentrations (MetaboPAC). MetaboPAC attempts to avoid the need for chemical 

standards by leveraging the mass balances of a metabolic system and determining the 

most biologically likely metabolic profiles. To the best of our knowledge, this is the first 

computational platform for standard-free inference of absolute concentrations using 

metabolic mass balances. MetaboPAC could play a significant role in improving the 
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ability to readily integrate metabolomics data with metabolic modeling and other 

metabolic analysis tools in the future. 

 

3.2 Methods for Inferring Absolute Concentrations 

3.2.1 Synthetic models 

 To assess MetaboPAC on different types of possible metabolic systems, we 

created two synthetic models. The first synthetic model (Figure 13A) contains four 

metabolites and five fluxes, where the initial influx is a known, constant reaction rate. 

With four metabolites and four unknown fluxes, the system is determined, which allows 

for the fluxes to be trivially solved using Equation 4, where 
𝑑𝑥⃑

𝑑𝑡
 is the vector of the change 

in concentration over time for each metabolite, S is the stoichiometric matrix of the 

system, and 𝑣⃑ is the vector of fluxes. Since a determined system typically has a single 

unique flux profile solution, this simplification makes it a prime candidate for initial 

testing.  

 

𝑑𝑥⃑

𝑑𝑡
= 𝑆 ∙ 𝑣⃑  (Equation 4) 

 

 The second synthetic model (Figure 13B) contains four metabolites and eight 

fluxes. Once again, the influx is assumed to have a known, constant reaction rate. Unlike 

the determined model, the second model contains more unknown fluxes than metabolites 

and is therefore underdetermined. Furthermore, we have included two allosteric 

regulatory interactions, inhibiting flux v3 and promoting flux v8. Most biological systems 

are underdetermined and include metabolite-dependent , making this system a more 
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complex and more relevant test for MetaboPAC. Both synthetic systems were constructed 

using Michaelis-Menten kinetics to model each reaction and each system was simulated 

for 10 seconds to generate concentration and flux data. 

 

 
Figure 13: Synthetic systems tested with MetaboPAC. 

We built one determined synthetic system and one underdetermined synthetic system 

with regulation using Michaelis-Menten kinetics for each reaction. xi represents the ith 

metabolite and vj represents the jth flux. In both systems, flux v1 is assumed to be constant 

and known.  

 

 

3.2.2 Biological models 

 While synthetic models are pragmatic for initially developing and testing 

MetaboPAC, they do not sufficiently resemble biological models to allow generalization 

of initial results to later applications. To further evaluate the robustness of MetaboPAC, 

we examined models of Escherichia coli44 and Saccharomyces cerevisiae47 metabolism. 

Both of these systems are underdetermined and include numerous allosteric regulatory 

interactions, with the E. coli model containing 18 metabolites and 48 fluxes, and the S. 

cerevisiae model containing 22 metabolites and 24 fluxes. The kinetic reaction equations 



61 

 

 

for both models include a mixture of Michaelis-Menten, Hill, and mass action kinetics. 

Data for both biological systems were produced by reconstructing the ODE models in 

MATLAB and simulating the E. coli and S. cerevisiae models over 10 seconds and 300 

seconds, respectively.  

 

3.2.3 Response factors 

To emulate relative abundance data, we generated 20 sets of response factors for 

each metabolite found in the four systems evaluated in this work. Response factors 

describe the relationship between relative abundances and their absolute concentrations. 

Each response factor was randomly selected from a uniform distribution between 1 and 

1000. These sets of response factors (RFT) were multiplied by the true absolute 

concentration values simulated by the kinetic models to calculate the relative abundances, 

assuming there is a direct linear relationship between the two (Equation 5). While this 

relationship is not always linear, calibration curves using chemical standards are often 

calculated using the slope of the curve and cover the linear dynamic range of an 

instrument for a particular analyte118. Additionally, metabolite responses are typically 

linear over two to four orders of magnitude32, 119, making it reasonable to assume a linear 

relationship between relative abundances and absolute concentrations. To infer absolute 

concentrations, the relative abundances are divided by the response factors predicted by 

MetaboPAC. The absolute concentrations for the systems used in this work ranged from 

1e-4 mM to 20 mM. 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 = 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 × 𝑅𝐹𝑇  (Equation 5) 
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3.2.4 Kinetic equations approach 

If the kinetic rate law of each reaction in the system has been previously 

determined, the mass balances of the system and dynamic nature of time course 

metabolomics data can be leveraged to identify the response factors necessary to infer 

absolute concentrations. Based on the mass balances, the rate of change in concentration 

of a metabolite must always equal the sum of stoichiometrically balanced influxes and 

effluxes of the metabolite (Equation 4). When the kinetics of the reaction fluxes are 

known, each influx and efflux can be represented by a mathematical term containing 

kinetic parameters and the concentration of the metabolite(s) that participate in the 

reaction, either as a substrate or an allosteric regulator. Because only relative abundances 

and not absolute concentrations are available, the metabolite concentrations in these 

kinetic equations are replaced by their respective relative abundances divided by a 

response factor. The rate of change can be determined by calculating the difference in 

relative abundance at two subsequent timepoints and dividing by the change in time. 

Once again, the relative abundances in these rate of change calculations are divided by a 

response factor to infer absolute concentrations.  

Across different timepoints in the metabolomics dataset, the response factors 

should remain constant for each metabolite, as they are not expected to change 

throughout an experiment. Together, the mass balances at each timepoint create a system 

of non-linear equations. A non-linear least-squares solver can determine the set of 

response factors that minimizes mass balance violations. These systems of equations 

must be determined or overdetermined to use the non-linear least-squares solver; as the 

number of timepoints in the data increases, the chance of having an underdetermined 
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system of equations decreases. In the kinetic equations approach, this system of non-

linear equations is solved 48 times (chosen based on the maximum number of local 

workers (12 workers, each used 4 times) when performing parallel computations) with 

different initial seeds selected from a uniform distribution and the medians of the 

predicted response factors are calculated at the conclusion of all the runs as the most 

likely set of response factors. 

 

3.2.5 Optimization approach 

 It is not uncommon for the kinetic equations of a reaction to be unknown, 

especially if the reaction is not in the most studied pathways of metabolism, such as 

central carbon metabolism. Instead of relying completely on the mass balances of the 

system to determine response factors, the optimization approach creates a minimization 

problem to predict the most likely set of response factors. In addition to minimizing mass 

balance violations in Equation 4 (without the known kinetic equations of the fluxes), 

there are also several penalties that can be added to the objective function to help identify 

sets of response factors that are biologically likely (Table 5). These penalties eliminate 

sets of response factors that lead to absolute concentrations that are biologically 

infeasible. For example, if a metabolite is the sole substrate of an enzyme, we expect the 

reaction rate to increase as the concentration of the metabolite increases. If this 

interaction is not observed between the inferred absolute concentration of the metabolite 

and the flux, the set of response factors would be heavily penalized. As in the kinetic 

equations approach, the optimization approach is performed 48 times with different initial 
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seeds and the medians of the predicted response factors from all the runs is calculated to 

determine the most likely set of response factors. 

Table 5: Penalties used in the optimization approach of MetaboPAC 
Penalty Description Reasoning 

Mass balance Calculate the sum of squared 

residuals between the inferred 

change in absolute concentration 

over time calculated from the 

raw relative abundance data (i.e. 

the change in relative abundance 

over time divided by the 

predicted response factor) and 

the inferred change in absolute 

concentration over time 

calculated from the 

stoichiometry of the system and 

inferred fluxes (i.e. Equation 4). 

If the change in absolute 

concentration over time is vastly 

different between the two 

calculations (i.e. the sum of 

squared residuals is greater than 

zero), the predicted response 

factors have failed to produce 

inferred absolute concentration 

and flux profiles that do not 

violate any mass balances in the 

system. 

Maximum concentration If the inferred absolute 

concentration for any metabolite 

is above 5 mM or 50 mM for 

synthetic and biological systems, 

respectively, add a penalty equal 

to the maximum value of all 

inferred concentrations. 

It is reasonable to assume that 

for many metabolites, there can 

be a general estimate for a 

maximum concentration that is 

biologically feasible, either due 

to limits in production or cell 

toxicity. Here, we use a single 

threshold for all metabolites, but 

imposing individual maximum 

thresholds would lead to better 

response factor predictions.  

Correlation for mass action 

reaction with a single substrate 

Calculate the correlation 

between the controller 

metabolite and inferred target 

flux. The correlation is expected 

to be positive (because 

metabolites induce mass action 

reactions), the penalty for each 

one-controller metabolite 

reaction equals the calculated 

correlation minus one.  

If a reaction is only controlled by 

a single metabolite, the reaction 

rate should either increase or 

decrease as the concentration of 

the metabolite increases 

(assuming the kinetics of the 

reaction do not exhibit any 

behavior similar to substrate 

inhibition). 

Curve fit for mass action 

reaction with a single substrate 

Calculate the fit of a second-

order polynomial to the 

controller metabolite and target 

flux data. The penalty for each 

one-controller metabolite 

reaction equals one minus the 

adjusted R2 of the fit (adjusted 

for the number of coefficients). 

A second-order polynomial 

should fit the data reasonably 

well if a reaction is controlled by 

a single metabolite (e.g. if the 

data is well-modeled by a 

Michaelis-Menten saturation 

curve). 
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Table 5 (continued) 
Correlation for reactions 

regulated by two controller 

metabolites 

Plot the data of one of the 

controller metabolites (x-axis) 

against the data of the inferred 

target flux (y-axis). Next, plot 23 

vertical lines that are evenly 

spaced within the range of the 

controller metabolite that 

represent 23 constant 

concentrations. For one vertical 

line, identify if and where the 

line intersects with the data 

using the InterX function and 

linearly interpolate flux data at 

these intersection points using 

the closest higher and lower 

concentrations with sampled flux 

data. Calculate the Spearman 

correlation between the second 

controller metabolite and 

interpolated target flux at these 

intersection points where the 

first controller metabolite is 

constant. Repeat for each of the 

23 vertical lines and then 

calculate the mean correlation. 

To calculate the penalty, take the 

mean correlation and subtract 

(for metabolites expected to 

induce the reaction) or add (for 

metabolites expected to inhibit 

the reaction) one. Switch which 

metabolite is held constant and 

repeat the process. Finally, sum 

all penalties together. 

The correlation between one 

controller metabolite and its 

target flux should be consistently 

close to +1 (activation) or -1 

(inhibition) for any constant 

concentration value for the 

second metabolite. This assumes 

that a controller metabolite 

cannot switch from inducing to 

inhibiting a reaction (or vice 

versa) at high concentrations, 

such as in substrate inhibition. 

Fit to BST kinetic equations For each reaction in a system, fit 

the inferred absolute 

concentration and flux data to a 

BST equation97 representing the 

reaction rate. Calculate the sum 

of squared residuals of the fit. 

A generic BST kinetic equation 

should fit reasonably well to 

correctly inferred absolute 

concentration and flux data. 

 

3.2.6 Combining the kinetic equations and optimization approaches 

 In many cases, the kinetic equations of the reactions in a system are only partially 

known. In this scenario, the kinetic equations and optimization approaches can be used in 

serial. First, the kinetic equations approach is used for the metabolite mass balance 

equations where all the kinetic equations of the influxes and effluxes are known. If only a 
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few of the kinetic equations of the fluxes in a mass balance are known, it cannot be used 

in the kinetic equations approach; this can be a common occurrence when only a small 

percentage of the kinetic structure of the system is known. Only the response factors 

associated with the metabolites present in the useable mass balances can be identified in 

this step. After predicting all the possible response factors using the kinetic equations 

approach, the optimization approach proceeds as described above, except the response 

factors that have already been identified are fixed within the optimization problem and 

the remaining response factors are predicted. A workflow for this process is presented in 

Figure 14. 
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Figure 14: MetaboPAC workflow for inferring absolute concentrations from 

relative abundances in metabolomics datasets.  

In the kinetic equations approach, the mass balances at each timepoint are used to create a 

system of non-linear equations where the response factors in the useable mass balances 

are predicted. These initial predicted response factors are transferred and fixed in the 

optimization approach, where penalties are used to eliminate possible sets of the 

remaining response factors. The final predicted response factors are used to infer the 

absolute concentrations of the data. RAi is the relative abundance and RFi is the unknown 

response factor of the ith metabolite, tn is a particular timepoint in the data, Sxi is the 

stoichiometric mass balance coefficients of the ith metabolite, and vtn is a vector of the 

fluxes at timepoint tn. The kinetic equations (if known) of vtn also contain relative 

abundances and response factors and are as shown in the inset (Michaelis-Menten 

kinetics are used as an example, where Vmaxf and KMf  are kinetic parameters of the fth 

flux). 

 

 

3.2.7 Solving for flux distributions in the optimization approach 

 The only information that MetaboPAC assumes is known is the stoichiometry and 

metabolite-dependent allosteric regulation of the system, the kinetic structure of the 

system (if the kinetic equations approach is used), and the relative abundances of the 

data. In the optimization approach, the flux profiles of the reactions in the system are 
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used to calculate some of the penalties that describe the relationship between inferred 

absolute concentrations and the reactions they control. Because fluxomics data are not 

assumed to be available, the fluxes must be inferred by solving Equation 4. As in the 

kinetic equations approach, the rate of change is determined by calculating the difference 

in relative abundance between two timepoints divided by the time difference. This rate of 

change is divided by the corresponding response factor to infer the rate of change of 

absolute concentration for each metabolite. While the fluxes of a determined system can 

be trivially calculated, underdetermined systems have an infinite number of flux 

solutions. To choose a single solution, the optimization approach uses the Moore-Penrose 

pseudoinverse, which minimizes the norm of the flux solution120. If the kinetic equations 

of some of the fluxes are known, they can be used to create a less underdetermined 

system that could possibly be determined or even overdetermined, which would allow a 

unique flux solution to be found.  

 

3.2.8 Noise-added data 

To generate noisy data that more closely represent experimental metabolomics 

data, we used two sampling frequencies and two coefficients of variation (CoV) for 

randomly-added noise, for a total of four conditions. Sampling frequencies of 50 and 15 

timepoints (nT) and CoVs of 0.05 and 0.15 were tested, where a higher CoV represents 

more noise (experimental error). Starting from the data generated by the ODEs defining 

the systems, each concentration value in each metabolomics dataset was replaced with a 

random value drawn from 𝑁𝑖,𝑘 ~ (𝑦𝑖(𝑡𝑘),𝐶𝑜𝑉∙𝑦𝑖(𝑡𝑘)), where 𝑦𝑖(𝑡𝑘) is the value of 

metabolite 𝑖 at timepoint 𝑘. Noisy data was smoothed using a Gaussian filter with a 
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window of one-fourth the length of the simulated time interval. 

 

3.2.9 Evaluation metrics and comparing to baseline methods 

 To measure the performance of MetaboPAC, we calculated the relative difference 

between the true and predicted values of the response factors using a logarithmic scale 

and determined if it was within a range of log2(1.1), log2(1.3), and log2(1.5) error, as 

shown in Equation 6. RFT is the true response factor, RFP is the predicted response factor, 

and x is the value that determine the log2 error range (i.e. 1.1, 1.3, or 1.5). We found that 

using absolute percent error instead of a logarithmic scale could lead to large error ranges 

that would make the evaluation metric less meaningful. For example, 100% error for a 

response factor of 500 would cover a range from 0 to 1000 (i.e. the entire search space of 

response factors for this work), whereas using a logarithmic scale would cover a range 

from only 250 to 1000. The percentages of predicted response factors that were within 

each log2 error range were compared among the methods assessed. 

 

|log2 𝑅𝐹𝑇 − log2 𝑅𝐹𝑃| < log2 𝑥  (Equation 6) 

 

To provide a baseline performance for predicting response factors, we examined 

two other methods for predicting response factors that were compared to MetaboPAC. 

The first method randomly predicts response factors using a uniform distribution between 

1 and 1000 for each metabolite. The second method uses a response factor of 500 for 

each metabolite, as predicted response factors close to the middle of the search space will 

have the greatest chance of being contained within the error range of the true response 
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factor if the response factors are chosen from a uniform distribution. 

 

3.3 Results 

3.3.1 MetaboPAC performance on noiseless data 

When initially assessing the performance of MetaboPAC on the two synthetic 

systems, we found the framework to perform exceptionally well on noiseless data (Figure 

15). For all percentages of known kinetic equations, MetaboPAC performed significantly 

better than the random response factors and response factors of 500 for each of the log2 

error ranges examined. For the underdetermined system with regulation, MetaboPAC 

performed significantly better than the other two methods when at least 60% of the 

kinetic equations were known for the log2(1.1) error range and when at least 40% of the 

kinetic equations were known for the log2(1.3) and log2(1.5) error ranges. Unsurprisingly, 

as the percentage of known kinetic equations increased, the accuracy of predicted 

response factors also generally increased for MetaboPAC, with 100% of the response 

factors within the log2(1.1) error range for both systems when 100% of the kinetic 

equations were known. As expected, the response factors predicted when using the 

kinetic equations approach were more accurate than the predictions by the optimization 

approach (Figure 16). Figure 17 shows the mean percentage of response factors predicted 

by either the kinetic equations approach or optimization approach across different 

percentages of known kinetic equations. 
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Figure 15: MetaboPAC performance on noiseless data for synthetic systems. 

MetaboPAC compared to random response factors and response factors of 500 for the A. 

determined and B. underdetermined with regulation systems using error ranges of 

log2(1.1), log2(1.3), and log2(1.5). Lines represent the mean percent of predicted response 

factors within the error ranges for each method. Error bars represent the standard error of 

the mean (n = 20 for different sets of true response factors). Asterisks denote when 

MetaboPAC performed significantly better at predicting response factors than both of the 

other two methods (two-sample t-test with α = 0.05). 

 

 

 
Figure 16: Percent of response factors predicted by the kinetic equation and 

optimization approaches within each log2 error range for the synthetic systems 

when using noiseless data. 

The kinetic equations approach generally predicted more accurate response factors than 

the optimization approach. Error bars represent the standard error of the mean (number of 

samples varies based on the percentage of kinetic equations known (Figure 17)). 
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Figure 17: Percentage of response factors predicted by the kinetic equation and 

optimization approaches for the synthetic systems. 

As the percentage of known kinetic equations increases, it is more likely for response 

factors to be solvable using the kinetic equations approach. Error bars represent the 

standard error of the mean (number of samples varies based on the percentage of kinetic 

equations known). 

 

 

 Testing MetaboPAC on the two biological systems with noiseless data yielded 

similar results (Figure 18). For the S. cerevisiae system, MetaboPAC performed 

significantly better than the other two methods across all log2 error ranges when at least 

40% of the kinetic equations were known, except for one case in the log2(1.5) error range. 

In the E. coli system, 60% of kinetic equations were required to be known for 

MetaboPAC to perform significantly better than the other two methods across all log2 

error ranges. Once again, the kinetic equations approach typically outperformed the 

optimization approach (Figure 19). While the performance of MetaboPAC on the 

biological systems was not as high as the performance on the synthetic systems, it was 

still able to predict at least 58.9% of the response factors within log2(1.1) error and at 

least 83% of the response factors within log2(1.3) error in both systems when 100% of the 

kinetic equations are known. 
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Figure 18: MetaboPAC performance on noiseless data for biological systems. 

MetaboPAC compared to random response factors and response factors of 500 for the A. 

S. cerevisiae and B. E. coli systems using error ranges of log2(1.1), log2(1.3), and 

log2(1.5). Lines represent the mean percent of predicted response factors within the error 

ranges for each method. Error bars represent the standard error of the mean (n = 20 for 

different sets of true response factors). Asterisks denote when MetaboPAC performed 

significantly better at predicting response factors than both of the other two methods 

(two-sample t-test with α = 0.05). 

 

 

 
Figure 19: Percent of response factors predicted by the kinetic equation and 

optimization approaches within each log2 error range for the biological systems 

when using noiseless data. 

The kinetic equations approach generally predicted more accurate response factors than 

the optimization approach. Error bars represent the standard error of the mean (number of 

samples varies based on the percentage of kinetic equations known (Figure 20)). 
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Figure 20: Percentage of response factors predicted by the kinetic equation and 

optimization approaches for the biological systems. 

As the percentage of known kinetic equations increases, it is more likely for response 

factors to be solved using the kinetic equations approach. Error bars represent the 

standard error of the mean (number of samples varies based on the percentage of kinetic 

equations known). 

 

 

3.3.2 MetaboPAC performance on noisy data 

While noiseless data provides a good benchmark for the performance of 

MetaboPAC under ideal conditions, real experimental metabolomics data will have some 

degree of noise. To test the robustness of MetaboPAC under more realistic conditions, we 

assessed MetaboPAC on datasets with different sampling frequencies (nT = 50 or 15) and 

different amounts of added noise (CoV = 0.05 or 0.15). In the synthetic systems, 

MetaboPAC was significantly better than both the random and 500 response factor 

approaches for almost all log2 error ranges (Figure 21 and Figure 22) when 100% of 

kinetic equations were known under the low sampling frequency and high noise condition 

(nT = 15, CoV = 015). We also determined that MetaboPAC generally performed the 

best in the conditions with low amounts of noise (CoV = 0.05) and often only required 

60% or 80% of the kinetics to be known to outperform the other methods. As found in the 

noiseless condition, the accuracy of the kinetic equations approach was higher than the 



75 

 

 

accuracy of the optimization approach in most cases (Figure 23 and Figure 24).  

  
Figure 21: MetaboPAC performance on all conditions of noisy data for the 

determined system. 

MetaboPAC compared to random response factors and response factors of 500 for the 

determined system using error ranges of log2(1.1), log2(1.3), and log2(1.5) on data with 

different sampling frequencies (nT = 50 or 15) and noise added (CoV = 0.05 or 0.15). 

Lines represent the mean percent of predicted response factors within the error ranges for 

each method. Error bars represent the standard error of the mean (n = 20 for different sets 

of true response factors). Asterisks denote when MetaboPAC performed significantly 

better at predicting response factors than both of the other two methods (two-sample t-

test with α = 0.05). 
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Figure 22: MetaboPAC performance on all conditions of noisy data for the 

underdetermined system with regulation. 

MetaboPAC compared to random response factors and response factors of 500 for the 

underdetermined system with regulation using error ranges of log2(1.1), log2(1.3), and 

log2(1.5) on data with different sampling frequencies (nT = 50 or 15) and noise added 

(CoV = 0.05 or 0.15). Lines represent the mean percent of predicted response factors 

within the error ranges for each method. Error bars represent the standard error of the 

mean (n = 20 for different sets of true response factors). Asterisks denote when 

MetaboPAC performed significantly better at predicting response factors than both of the 

other two methods (two-sample t-test with α = 0.05). 
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Figure 23: Percent of response factors predicted by the kinetic equation and 

optimization approaches within each log2 error range for the determined system 

when using noisy data. 

The kinetic equations approach generally predicted more accurate response factors than 

the optimization approach. Error bars represent the standard error of the mean (number of 

samples varies based on the percentage of kinetic equations known (Figure 17)). 
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Figure 24: Percent of response factors predicted by the kinetic equation and 

optimization approaches within each log2 error range for the underdetermined 

system with regulation when using noisy data. 

The kinetic equations approach generally predicted more accurate response factors than 

the optimization approach. Error bars represent the standard error of the mean (number of 

samples varies based on the percentage of kinetic equations known (Figure 17)). 

 

While there was a predictable decrease in overall performance compared to the 

results when using noiseless data, MetaboPAC was still able to predict 56.3% and 100% 

of response factors within log2(1.5) error for the determined and underdetermined system 

with regulation, respectively, when 100% of the kinetic equations were known. 

Surprisingly, MetaboPAC seems to perform better on the underdetermined system with 

regulation compared to the determined system at 100% known kinetic equations, despite 

the increase in complexity. The simplicity of the mass balance equations in the 
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determined system (with fewer reaction kinetics and no regulation, and therefore fewer 

instances of response factors within the mass balance equations) may actually hinder 

identification of accurate response factors in this instance. 

For the two biological systems, MetaboPAC was still found to significantly 

predict response factors more accurately than random response factors or response factors 

of 500 for most of the log2 error ranges when 100% of the kinetic equations were known 

under low sampling and high noise conditions (Figure 25 and Figure 26). Once again, 

MetaboPAC showed some improved performance when under conditions where there 

was a high sampling frequency or low noise. Interestingly, the optimization approach 

often performed better than the kinetic equations approach when a low percentage of 

kinetic equations was known (Figure 27 and Figure 28), which was less common in the 

synthetic systems. In some cases, the optimization approach alone (0% known kinetic 

equations) was even significantly better than randomly predicting response factors or 

response factors of 500. This observation illustrates that both the kinetic equations and 

optimization approaches are important to the framework. When a low percentage of 

kinetic equations were known (20% to 60%), the performance of MetaboPAC was 

sometimes worse than its performance when using only the optimization approach. We 

found that these low percentages led to systems of non-linear equations in the kinetic 

equations approach that did not contain a large enough number of equations to reliably 

predict accurate response factors when using noise-added data. Instead, poor response 

factors were predicted by the kinetic equations approach, which led to the optimization 

approach underperforming when predicting the remaining response factors. If only a low 

percentage of kinetic equations are known, opting to use the optimization approach may 
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produce more accurate results. 

 

  
Figure 25: MetaboPAC performance on all conditions of noisy data for the S. 

cerevisiae system. 

MetaboPAC compared to random response factors and response factors of 500 for the S. 

cerevisiae system using error ranges of log2(1.1), log2(1.3), and log2(1.5) on data with 

different sampling frequencies (nT = 50 or 15) and noise added (CoV = 0.05 or 0.15). 

Lines represent the mean percent of predicted response factors within the error ranges for 

each method. Error bars represent the standard error of the mean (n = 20 for different sets 

of true response factors). Asterisks denote when MetaboPAC performed significantly 

better at predicting response factors than both of the other two methods (two-sample t-

test with α = 0.05). 
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Figure 26: MetaboPAC performance on all conditions of noisy data for the E. coli 

system. 

MetaboPAC compared to random response factors and response factors of 500 for the E. 

coli system using error ranges of log2(1.1), log2(1.3), and log2(1.5) on data with different 

sampling frequencies (nT = 50 or 15) and noise added (CoV = 0.05 or 0.15). Lines 

represent the mean percent of predicted response factors within the error ranges for each 

method. Error bars represent the standard error of the mean (n = 20 for different sets of 

true response factors). Asterisks denote when MetaboPAC performed significantly better 

at predicting response factors than both of the other two methods (two-sample t-test with 

α = 0.05). 
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Figure 27: Percent of response factors predicted by the kinetic equation and 

optimization approaches within each log2 error range for the S. cerevisiae system 

when using noisy data. 

At low percentages of known kinetic equations, the optimization approach often 

performed better than the kinetic equations approach. At around 80% known kinetic 

equations, the kinetic equations approach began to have improved performance over the 

optimization approach. Error bars represent the standard error of the mean (number of 

samples varies based on the percentage of kinetic equations known (Figure 20)). 
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Figure 28: Percent of response factors predicted by the kinetic equation and 

optimization approaches within each log2 error range for the E. coli system when 

using noisy data. 

At low percentages of known kinetic equations, the optimization approach often 

performed better than the kinetic equations approach. At around 60% known kinetic 

equations, the kinetic equations approach began to have improved performance over the 

optimization approach. Error bars represent the standard error of the mean (number of 

samples varies based on the percentage of kinetic equations known (Figure 20)). 

 

 

3.4 Discussion 

MetaboPAC has shown substantial potential to provide accurate absolute 

concentrations for metabolites in well-studied metabolic pathways (e.g. central carbon 

metabolism) whose kinetics have been previously determined for various biological 
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systems. Metabolomics research in common microorganisms, such as E. coli and S. 

cerevisiae, could  benefit significantly from MetaboPAC, as it will allow metabolomics 

data to be more seamlessly integrated with metabolic modeling frameworks and data 

analysis methods that require absolute concentrations. The key component of 

MetaboPAC is the use of mass balances within a system with known stoichiometry. 

Previously, mass balances have been used to determine quenching leakage in 

metabolomics121, but to the best of our knowledge, this is the first time mass balances 

have been used in the context of inferring absolute concentrations. Because MetaboPAC 

leverages the mass balances of a system to predict its response factors, it is unsurprising 

that the performance of MetaboPAC is hindered under conditions with high noise, as the 

mass balances can be affected. Nevertheless, MetaboPAC still significantly outperformed 

the other two methods assessed when all kinetic equations are known, suggesting that 

systems with known kinetic structures would benefit from MetaboPAC. 

One of the strengths of MetaboPAC is that additional information can be easily 

integrated into the framework to reduce the number of possible sets of response factors. If 

the minimum or maximum possible or predicted concentrations of each (or a few) 

metabolites are known, this can greatly reduce the search space of possible sets of 

response factors. We found that constraining the range of possible response factors of one 

metabolite would often lead to the range of possible response factors of other metabolites 

also being constrained, especially metabolites nearby in the metabolic pathway. This is 

likely due to their mass balances sharing some of the same reaction fluxes. Along those 

lines, chemical standards could be used for some metabolites, which would decrease the 

number of response factors MetaboPAC would need to predict and would once again lead 



85 

 

 

to more constrained ranges of possible response factors for some metabolites. 

Along with incorporating additional information directly into the framework, 

MetaboPAC could also be used concurrently with other metabolomics methods to 

improve the accuracy of response factor predictions. The use of methods focused on 

predicting ionization efficiencies114-116 in conjunction with MetaboPAC could provide 

further insight about which response factors predicted by MetaboPAC are most likely to 

be accurate if the inferred concentrations of MetaboPAC and the ionization efficiency-

based platforms are similar. When working with underdetermined systems, methods such 

as dynamic flux estimation122, 123 or flux balance analysis34 could be applied to determine 

more likely flux distributions than the Moore-Penrose pseudoinverse approach used in 

MetaboPAC, which could lead to improved predictions of response factors when using 

the optimization approach. Alternatively, if minimum or maximum values of individual 

fluxes are known, this could also reduce the number of possible flux solutions and benefit 

the calculation of penalties in the optimization approach. 

In this proof-of-principle work, there are two key assumptions we have used to 

initially assess MetaboPAC. These assumptions are reasonable to assume for this work, 

but they will need to be adjusted in the future for MetaboPAC to be more widely 

applicable. First, we assumed the relationship between relative abundances and their 

absolute concentrations is linear. These relationships are not always linear in 

experimental data and non-linear relationships will need to be considered in the future . 

Both the kinetic equations and optimization approaches within MetaboPAC can be easily 

adjusted to account for non-linear relationships, but determining which metabolites have 

non-linear relationships is a more difficult problem and will need to be explored if this 
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information is not known a priori.  

MetaboPAC also assumes the true response factors are sampled from a uniform 

distribution. Under the most realistic conditions, this may not be the case. To further 

assess the robustness of MetaboPAC, we tested the framework on noiseless relative 

abundance data from the two biological systems (assuming all kinetic equations are 

known) where the true response factors were drawn from a log uniform distribution 

(Figure 29). While there is a decrease in performance when using MetaboPAC on both 

biological systems compared to the results in Figure 18, this drop in performance is also 

seen in both the random and 500 response factor methods. MetaboPAC is still 

significantly better than the other two methods by a wide margin in all log2 error ranges 

examined, which indicates that MetaboPAC is still suitable even if response factors are 

not uniformly distributed. 
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Figure 29: MetaboPAC Performance when true response factors are sampled from 

a log uniform distribution. 

To further test the robustness of MetaboPAC, the true response factors were drawn from 

a log uniform distribution instead of a uniform distribution for the two biological systems 

with 100% known kinetic equations and noiseless data. MetaboPAC still outperformed 

the other two methods across all log2 error ranges in both the S. cerevisiae and E. coli 

systems. Bars represent the mean percent of predicted response factors within the error 

ranges for each method. Error bars represent the standard error of the mean (n = 20 for 

different sets of true response factors). 

 

While the results presented here are promising, MetaboPAC currently has some 

limitations. First, because MetaboPAC leverages the stoichiometric mass balance of a 

biological system to identify response factors, it can only be used in the context of 

cellular metabolism in its current form. For example, MetaboPAC could not infer the 

absolute concentrations of metabolites in a blood sample because blood metabolite 

profiles are determined from metabolic contributions from across organs or systems in an 

organism with no stoichiometric basis to connect concentrations124.  

Perhaps the greatest obstacle for MetaboPAC is noisy data. In our results, we 

have determined that MetaboPAC performs particularly well on datasets with little or no 

noise, even when the kinetics of the system are not fully known. Under the noisiest 

condition (CoV = 0.15), we still generally find MetaboPAC to perform significantly 
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better than other methods for predicting response factors when all kinetic equations were 

known, but there is a noticeable decrease in accuracy. Leveraging the mass balances of a 

metabolic system is one of the critical ideas behind MetaboPAC and it is not surprising 

that data with high noise affect these calculations. Here, we have used a Gaussian filter to 

smooth the noisy data, which has proven to be effective, but other venues for mitigating 

the effect of noise should be considered. Exploring other options to reduce noise, such as 

filtering, normalization, scaling, other smoothing methods102, 103, 125, or using triplicate 

samples as is common when collecting metabolomics data, could prove useful and lead to 

an increase in performance. 

 

3.5 Conclusions 

The need for chemical standards in mass spectrometry methods to absolutely 

quantify metabolomics data has been a challenging obstacle that has prevented the direct 

use of metabolomics in many metabolic modeling tools. MetaboPAC is a critical step 

toward preprocessing metabolomics data so that it can be readily used with metabolic 

modeling and other computational platforms that require absolute concentrations of 

metabolites. For well-studied systems, where the entire kinetic structure is known, 

MetaboPAC can infer absolute concentrations with high accuracy. Under conditions 

where the amount of noise in the data is minimal, MetaboPAC can still provide valuable 

information if the kinetic equations are only partially known. As research in 

metabolomics continues to grow and more computational frameworks aim to harness all 

the information that metabolomics data has to offer, MetaboPAC has the potential to 

become a powerful tool for absolute quantification in metabolomics.  
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CHAPTER 4: Improved Kinetics Constraints Increase the Predictivity 

and Applicability of a Linear Programming-based Dynamic Metabolic 

Modeling Framework 
 

 

 

4.1 Background 

Mathematical and computational models are often used to study metabolism, the 

set of reactions that supply the chemical precursors necessary for almost all cellular 

processes. These metabolic models are significantly cheaper and faster to run than 

laboratory experiments, meaning that they can be of tremendous value when they are able 

to predict how changes in or to a metabolic system can affect its state. While a few 

pathways and sections of metabolism (e.g., glycolysis and central carbon metabolism) 

have been modeled and characterized quite well in a few organisms (e.g., Saccharomyces 

cerevisiae and Escherichia coli)44, 50, genome-scale models that capture metabolism at a 

systems scale have been more difficult to develop. Metabolism involves many 

interconnected reactions and pathways, making it critical to include as much of 

metabolism as possible in metabolic models to better represent the system and generate 

accurate predictions. Metabolomics has great potential to provide the information 

necessary to drive systems-scale metabolic models. However, creating genome-scale 

metabolic models that capture critical system behaviors like metabolic dynamics remains 

an outstanding challenge in the field, which has prevented the value of metabolomics data 

in this context from being fully realized.  

To address this challenge, we recently developed Linear Kinetics-Dynamic Flux 

Balance Analysis (LK-DFBA), a modeling strategy to efficiently track metabolite 

dynamics56. LK-DFBA combines advantages of both constraint-based and ODE models, 
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unrolling the temporal aspect of the system into a larger stoichiometric matrix that 

captures metabolite dynamics while retaining a LP structure. The most critical element to 

accomplishing this goal is the addition of linear kinetics constraints that model the 

interactions between metabolites and the reactions whose fluxes they affect, including 

mass action kinetics and allosteric regulatory interactions. The number of parameters in 

LK-DFBA that need to be estimated can be far fewer than in ODE models due to these 

linear kinetics constraints. This enables LK-DFBA to potentially be applied to metabolic 

systems of all sizes, with a smaller increase in computational burden compared to ODE 

models. Furthermore, because LK-DFBA retains a linear structure, it can potentially be 

used with many existing metabolic modeling tools that require constraint-based models, 

such as OptKnock126. We have previously shown that LK-DFBA can outperform ODE-

based modeling approaches when used in conditions most relevant to metabolomics data 

(low sampling frequency and high noise). A framework such as LK-DFBA that can 

model systems at the genome scale is essential to take full advantage of metabolomics 

data. 

In our initial description of LK-DFBA, we explored two different approaches for 

model parameterization. The first approach, LK-DFBA (LR), parameterizes constraints 

solely via linear regression of interacting metabolite concentration and flux data. The 

second approach, LK-DFBA (LR+), uses the parameters from the linear regressions as 

initial seeding values for a secondary optimization to identify the optimal constraints for 

each interaction. While LK-DFBA (LR+) yields better fits to training data than LK-

DFBA (LR), the latter approach estimates its parameters with trivial computational effort 

while still producing results that are similar in error to ODE models. As a result, LK-
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DFBA (LR) may be the preferable approach for the efficient construction and 

parameterization of metabolic models at the genome scale.  

However, the overall LK-DFBA framework still has some limitations in terms of 

how accurately it represents the underlying biology and biochemistry of the system. For 

example, the linear kinetics constraints used in LK-DFBA (LR) may be viewed as crude 

approximations of the interactions between metabolites and fluxes, which are typically 

non-linear in nature. While kinetic equations found in ODE models (such as Michaelis-

Menten or biochemical system theory (BST) representations97, 127) can capture the non-

linearity of these interactions, the current linear framework in LK-DFBA cannot. 

Additionally, when allosteric regulatory information is considered (which LK-DFBA 

includes in its framework), reaction fluxes are often controlled by multiple metabolites. 

Currently, LK-DFBA creates separate constraints for each metabolite that controls a flux, 

which precludes modeling how multiple metabolites simultaneously interact with a 

reaction flux. 

Since the linear kinetics constraints are so critical to the function of LK-DFBA, it 

is likely that improving those constraints could have a substantial impact on LK-DFBA’s 

ability to capture and predict biological phenomena. Accordingly, we devised three new 

types of kinetics constraints for LK-DFBA to account for biologically relevant features 

like non-linearity and simultaneous regulation by multiple metabolites. These new 

approaches were compared to the original LK-DFBA (LR) constraints by testing on 

synthetic model systems as well as models based on Lactococcus lactis and Escherichia 

coli44, 50 metabolism. We also probed these constraint approaches for their robustness to 

model perturbation and their ability to predict phenomena not captured in training data. 
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We found that these new constraint approaches can improve model performance, and that 

the optimal constraint approach varied depending on the system being modeled but was 

consistent across perturbations for any given model. We also showed that the LK-DFBA 

approach chosen for the L. lactis and E. coli models can be used to predict changes in 

several critical metabolites and fluxes in agreement with literature experimental results. 

These improvements to LK-DFBA and demonstration of its effectiveness on new 

metabolic models support its attractiveness as a framework for modeling increasingly 

large metabolic systems in the future. 

 

4.2 Linear Kinetics Dynamic Flux Balance Analysis (LK-DFBA) 

 Linear Kinetics-Dynamics Flux Balance Analysis (LK-DFBA) is a recently 

developed modeling strategy that is both scalable and capable of capturing metabolite 

dynamics. The full details of this approach have been described in detail previously56, so 

we only outline the most important aspects of our framework here. In brief, LK-DFBA 

uses an LP-based structure with temporal dynamics modeled by discretizing time and 

unrolling the system into a larger matrix representing each timepoint separately, with an 

objective function that reflects the unrolling of the model. Linear inequality constraints 

that model mass action kinetics and metabolite-dependent regulation are included in the 

model; they are the driving force behind metabolite accumulation and depletion by 

limiting the maximum flux allowed based on the availability of metabolites over time. To 

parameterize these constraints, the LK-DFBA (LR) approach uses linear regression on 

assumed available metabolomics and fluxomics data, as described in the next section. If 

fluxomics data are unavailable, dynamic flux estimation (DFE) can be used to infer flux 
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values from concentration data123. In the LK-DFBA (LR+) method, the parameters from 

the LK-DFBA (LR) approach are used as initial conditions in a secondary optimization 

step that finds improved kinetics constraint parameters, though at the cost of 

computational time. Because LK-DFBA retains an LP structure, it is readily scalable and 

has the potential to be used with current constraint-based modeling tools. 

 

4.3 Methods for Improving LK-DFBA 

4.3.1 Constraint approaches 

Throughout this work, we examined the original LK-DFBA (LR) approach and 

three new constraint approaches described in detail below. 

 

4.3.1.1 LK-DFBA (LR)  

The original LK-DFBA approach uses linear kinetics constraints to model the 

interaction between a metabolite and a flux, parameterized using available metabolomics 

and fluxomics data. These constraints take the form of 𝑣 < 𝑎𝑥 + 𝑏, where v is the flux 

being constrained, x is the concentration of a metabolite that interacts with the flux, and a 

and b are the linear constraint parameters. These interactions may be due to mass action 

kinetics, where the interactions are known based on the stoichiometric topology of the 

system, or they may stem from allosteric regulation. While we have previously shown 

that these linear approximations of metabolic interactions can be effective for modeling 

metabolism, they are still approximations of the true non-linear and interconnected 

biochemical relationships in metabolism. Below, we discuss three new constraint 

approaches to address these potential limitations. 
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4.3.1.2 LK-DFBA (NLR) 

While the key advantage of using constraint-based models is their LP structure 

that enables efficient identification of the optimal solution of the problem, most 

metabolite-flux interactions exhibit non-linear behavior that may not be captured well by 

linear equations. Recently, computational solvers have improved such that quadratically 

constrained programs (QCPs) are not much more computationally expensive than LPs. 

Accordingly, we implemented quadratic constraints into the LK-DFBA framework to 

explore their potential for improving model accuracy with only a modest increase in 

computational time. One important aspect of LPs and QCPs is that all of the constraints 

must create a convex feasible solution space in order to guarantee that a global optimum 

can be found52. If 𝑣 < 𝑎𝑥2 + 𝑏𝑥 + 𝑐 represents a quadratic constraint, where v is the flux 

being constrained, x is the concentration of a metabolite that interacts with v, and a, b, 

and c are the parameters of the quadratic constraint, a must be a negative value to retain a 

convex solution space. If a is found to be a positive value during parameterization, we 

convert the quadratic constraint into its original linear form as found in LK-DFBA (LR). 

We refer to this overall approach as LK-DFBA (NLR). 

 

4.3.1.3 LK-DFBA (DR) 

Enzymatic reactions are often controlled by more than a single metabolite that can 

either induce or inhibit enzyme activity, which should ideally be captured in the model 

constraints. To model such regulation of a reaction by multiple metabolites, LK-DFBA 

(LR) creates individual linear constraints for each controller metabolite that are 

independent of each other and are thus unable to capture the synergistic or antagonistic 
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effects of multiple metabolites working in conjunction to regulate a flux. We 

implemented a new strategy that uses dimensionality reduction to consolidate information 

content from all controller metabolites for a flux into a single constraint. Dimensionality 

reduction is often used in data analysis, including analysis of metabolomics data, to more 

easily represent and digest datasets with many measured variables. Principal component 

analysis (PCA) is one of the most commonly used dimensionality reduction approaches; 

it linearly transforms the original variables into new, orthogonal composite variables 

called principal components that capture as much variance in the original variable data in 

as few principal components as possible128. Ideally, the first or first few principal 

components capture the majority of the variance in the original dataset, which allows one 

to focus only on those composite variables rather than all of the original variables at once. 

Here, we use PCA to capture the maximal variance of the controller metabolite data in a 

single principal component and use that composite variable as the regressor during linear 

regression with the target flux data. These new constraints are represented as 𝑣 < 𝑎𝑃𝐶1 +

𝑏, where v is the flux being constrained, PC1 is the metabolite concentration data 

projected into the first principal component, and a and b are the constraint parameters. 

We refer to this dimensionality reduction approach as LK-DFBA (DR). 

 

4.3.1.4 LK-DFBA (HP) 

Another approach for modeling interactions with multiple metabolites is to use 

hyperplane constraints. Unlike LK-DFBA (DR), which always builds constraints in two 

dimensions (i.e. the target flux vs. the first principal component), the hyperplane 

constraint exists in (n + 1) dimensions, where n is the number of metabolites that control 
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a target flux. This approach may avoid loss of information content from metabolite data 

as is possible during dimensionality reduction: as the number of metabolites in an 

interaction increases, the likelihood of the first principal component not capturing the 

majority of variance in the data increases. The hyperplane constraint equation can be 

represented as 𝑣 < ∑ 𝑎𝑖𝑥𝑖
𝑛
𝑖=1 + 𝑏, where v is the flux being constrained, n is the number 

of metabolites that interact with v, xi is the concentration of metabolite i, ai is the 

constraint parameter for metabolite xi, and b is another constraint parameter. We refer to 

the hyperplane approach as LK-DFBA (HP). 

 

4.3.2 Translating constraints to contain training data 

We found that translating the constraints such that all training data fall in the 

region under the inequality constraint decreased the possibility of the computational 

solver encountering infeasible solutions when simulating metabolite dynamics. Thus, for 

all LK-DFBA approaches, each constraint was translated to contain the training data by 

increasing the intercept of the constraint (i.e. the b parameter in LK-DFBA (LR), LK-

DFBA (DR), and LK-DFBA (HP), and the c parameter in LK-DFBA (NLR)) until no 

training data were above each constraint. 

 

4.3.3 Test models 

In this work, we assessed several synthetic models and two biological systems 

described below. 
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4.3.3.1 Synthetic model 

The first system we examine is a simple synthetic model with five metabolites 

and five fluxes that was derived from a branched pathway model used previously56. This 

system is based on an ODE-based modeling framework that uses power-law kinetics to 

represent reaction fluxes97. The kinetic equations for each pathway are shown in Figure 

30. To create a variety of synthetic models with the same stoichiometric topology, we 

randomly generated a and b parameters in each kinetic equation. The parameters for each 

model can be found in Table 6. Time course metabolite and flux data were generated by 

solving the ODE system in MATLAB (2018b). 

 

 

Figure 30: Synthetic model.  

Adapted from another branched pathway model used in previous work56. v1, v2, v3, v4, 

and v5 are system fluxes (black arrows) and x1, x2, x3, x4, and xBM are metabolites, where 

xBM is a metabolite representing biomass. Green and red arrows represent positive and 

negative regulatory interactions, respectively. ODE equations for the model are shown in 

the inset, where blue a and b parameters are mass action kinetic parameters and green and 

red b parameters are positive and negative regulatory parameters, respectively. 

 

  



98 

 

 

Table 6: Kinetic parameters in synthetic models.  

Parameters were randomly generated using a uniform distribution between 0.1 and 1.0 (or 

-1.0 to -0.1 for b2r4, which is a parameter that describes inhibition in the system). k 

represents the model number. 
  Kinetics Initial Conditions 

k a2 b21 b2r4 a3 b32 a4 b42 b4r3 a5 b53 b54 X1 X2 X3 X4 XBM 

1 0.8 0.5 -0.2 1.0 0.75 0.5 0.4 0.8 0.5 0.5 0.8 0.1 0.2 0.3 0.4 0.5 

2 0.7 0.5 -0.2 0.8 0.2 0.2 0.9 0.7 0.9 0.4 0.9 0.3 0.3 0.6 0.5 0.2 

3 0.1 0.5 -0.7 0.6 0.9 0.6 0.3 0.9 0.2 0.4 0.3 0.4 0.9 0.6 0.1 0.9 

4 0.9 0.4 -0.2 0.6 0.8 0.4 0.9 0.6 0.5 0.2 0.7 0.8 0.1 0.5 0.7 0.8 

5 0.2 0.4 -0.2 0.9 0.6 0.6 0.3 0.6 0.5 0.7 0.8 0.5 0.5 0.8 0.5 0.2 

6 0.1 0.6 -0.3 0.3 0.9 0.5 0.1 0.7 0.6 0.8 0.6 0.2 0.9 0.2 0.1 0.3 

7 0.5 0.2 -0.2 0.1 0.9 0.2 0.9 0.9 0.6 0.5 0.8 0.2 0.3 0.1 0.7 0.6 

8 0.9 0.4 -0.3 0.8 0.1 0.2 0.9 0.7 0.2 0.6 0.8 0.6 0.4 0.1 0.4 0.4 

9 0.6 0.5 -0.9 0.4 0.6 0.8 0.8 0.4 0.7 0.8 0.9 0.3 0.4 0.2 0.7 0.8 

10 0.6 0.3 -0.9 0.3 0.2 0.6 0.6 0.7 0.6 0.8 0.9 0.4 0.2 0.8 0.1 0.7 

11 0.8 0.2 -0.6 0.7 0.4 0.3 0.7 0.8 0.4 0.1 0.2 0.5 0.1 0.4 0.8 0.4 

12 0.9 0.9 -0.1 0.1 0.4 0.7 0.3 0.3 0.8 0.1 0.8 0.1 0.9 0.9 0.6 0.1 

13 0.2 0.9 -0.8 0.3 0.7 0.6 0.5 0.8 0.6 0.5 0.3 0.3 0.1 0.2 0.4 0.9 

14 0.9 0.5 -0.9 0.1 0.8 0.2 0.7 0.3 0.5 0.8 0.5 0.9 0.7 0.3 0.5 0.9 

15 0.6 0.8 -0.7 0.1 0.2 0.2 0.9 0.9 0.9 0.9 0.2 0.2 0.8 0.2 0.4 0.5 

16 0.1 0.2 -0.7 0.8 0.5 0.5 0.9 0.4 0.3 0.2 0.6 0.8 0.8 0.2 0.1 0.5 

17 0.3 0.4 -0.3 0.7 0.5 0.9 0.5 0.2 0.7 0.6 0.3 0.5 0.1 0.8 0.3 0.2 

18 0.5 0.9 -0.4 0.3 0.6 0.4 0.2 0.3 0.7 0.5 0.6 0.9 0.4 0.6 0.2 0.9 

19 0.9 0.8 -0.6 0.9 0.7 0.6 0.2 0.6 0.4 0.1 0.7 0.1 0.3 0.5 0.2 0.2 

20 0.9 0.9 -0.2 0.1 0.7 0.3 0.3 0.5 0.6 0.4 0.7 0.4 0.8 0.2 0.3 0.4 

 

4.3.3.2 Lactococcus lactis model  

This model was created by Costa et al. and comprises central metabolism and 

production pathways for important metabolites such as mannitol and 2,3-butanediol 50. 

The L. lactis model consists of 26 metabolites and 21 fluxes and is publicly available on 

KiMoSys129. Noiseless data were generated in COPASI 4.24 (Build 197) using the 

default initial conditions and parameters over a simulation time of two hours. 

 

4.3.3.3 Escherichia coli model  

The E. coli model developed by Chassagnole et al. encompasses glycolysis and 

the pentose phosphate pathway44. This model is publicly available on KiMoSys but was 

rebuilt within MATLAB to allow easy creation of new models that use the original E. 
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coli model’s topology and stoichiometry. Noiseless data for the original E. coli model 

were generated in MATLAB (2018b) using the default initial conditions and parameters, 

while random initial conditions and parameters were used for the new models with the E. 

coli topology. To be consistent with our previous work, we used a simulation time of ten 

seconds56. 

 

4.3.4 Kinetic parameters in E. coli models 

Parameters were randomly generated by drawing from the random normal 

distribution 𝑁𝑖 ~ (p𝑖,p𝑖) and taking the absolute value, where pi is the original value of the 

ith parameter. Some parameters, such as the feed rate, dilution rate, and rates of synthesis 

reactions were kept at their original parameter values to ensure the models were viable. 

 

4.3.5 LK-DFBA objective functions 

Like other constraint-based methods, LK-DFBA requires an objective function, 

which is usually tied to some presumed goal of the system (such as maximizing biomass 

or ATP production). FBA models for specific organisms commonly have a separate flux 

reaction dedicated to biomass, made up of precise ratios of different metabolites. While 

LK-DFBA models with tuned objective functions can be created, the biological models 

we sought to use here do not have pre-existing tuned objective functions, so we instead 

focused on LK-DFBA’s performance using generic objective functions.  

Here, we have chosen flux v5 as the objective function for the synthetic model, as 

it is the only efflux out of the system. For the L. lactis model, we use the LDH pathway 

as the objective function to maximize production of lactate because it is a key metabolite 
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in the organism (which is commonly used for dairy products) and was the metabolite 

produced at the highest levels in the original L. lactis model50. The objective function 

used for the E. coli model was to maximize all effluxes from the system, which included 

murein synthesis, glycerol-3-phosphate dehydrogenase, serine synthesis, PEP 

carboxylase, DAHP synthesis, pyruvate dehydrogenase, ribose phosphate 

pyrophosphokinase, glucose-1-phosphate adenyltransferase, the synthesis of murein and 

chorismate from PEP, and the synthesis of isoleucine, alanine, α-ketoisovalerate, and 

diaminopimelate from pyruvate. While we have observed that these objective functions 

can be further improved, and approaches have been developed for finding an optimal 

objective function for a model by creating a bilevel optimization problem and then 

leveraging the duality theorem130, 131, our chosen objective functions were sufficient to at 

least qualitatively model the synthetic, L. lactis, and E. coli systems. 

 

4.3.6 Pathway perturbations 

 To test the ability of LK-DFBA to predict metabolic behaviors not represented in 

the training data, we introduced perturbations into each system either through down-

regulation (indicated with a prefix ‘d’ in all figures) or up-regulation (indicated with a 

prefix ‘u’) of reaction fluxes. For the synthetic models, we down-regulated v2, v3, and v4 

by multiplying their constraint equation parameters (which restricts their maximum 

allowable flux value) by 0.5x and up-regulated these pathways by doubling the constraint 

equation parameters. The pathways and reactions to be perturbed in the L. lactis 50, 132-135 

and E. coli45, 136-139 models were chosen based on previous literature. Reactions in the L. 

lactis model (lactate dehydrogenase, phosphofructokinase, acetate kinase, mannitol 1-
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phosphatase) were down-regulated to 0.1x their original parameter values (since 

completely knocking out reactions would often produce infeasible solutions for the linear 

program) and up-regulated to 2x their original parameter values, magnitudes that were 

necessary to effect significant perturbations to the system’s behavior. Reactions in the E. 

coli model (pyruvate kinase, phosphoglucose isomerase, glyceraldehyde-3-phosphate 

dehydrogenase, phosphofructokinase, triose-phosphate isomerase, ribulose-phosphate 

epimerase, phosphoglucomutase) were down-regulated to 0.1x and up-regulated to 2x 

their original parameter values. 

 

4.3.7 Generating noisy data 

 Noise was introduced into the system by down-sampling the original noiseless 

data (originally 50 timepoints) into nT timepoints that are evenly spaced over the time 

interval of interest. Both metabolite and flux values were then replaced with a random 

value drawn from 𝑁𝑖,𝑘 ~ (𝑦𝑖(𝑡𝑘),𝐶𝑜𝑉∙𝑦𝑖(𝑡𝑘)), where 𝑦𝑖(𝑡𝑘) is the value of species 

(metabolite or flux) 𝑖 at timepoint 𝑘, and CoV is a coefficient of variance. For each 

sampling frequency and CoV condition, ten noisy datasets were generated.  

 

4.3.8 Error calculation 

 The error of the predictions made by LK-DFBA was calculated using a 

normalized root mean squared error (NRMSE) between the LK-DFBA predicted 

metabolite concentrations and the noiseless ODE concentration or experimental data. Pik 

and Rik are the predicted (e.g. results from LK-DFBA) and reference (e.g. ODE model or 

experimental) data from a system with m metabolites and nT timepoints. 𝑅̅𝑖 is the mean 
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of the concentrations of reference metabolite i across all timepoints to normalize the data 

and N is the total number of data points used in the NRMSE calculation.  

 

𝑵𝑹𝑴𝑺𝑬 =  √
∑ ∑ (

𝑷𝒊𝒌−𝑹𝒊𝒌
𝑹̅𝒊

)𝟐𝒏𝑻
𝒌=𝟏

𝒎
𝒊=𝟏

𝑵
 (Equation 7) 

 

4.3.9 Pearson correlation calculation 

 The available E. coli knockout experimental data consisted of steady-state flux 

data, so to compare these to the knockout predictions made by LK-DFBA (which did not 

yield a steady state over the ten second time interval of the model) we used the average 

flux of our time course predictions. Because the average flux of our predictions and the 

steady-state fluxes of the experimental data are different measurements and therefore not 

directly comparable using NRMSE, we chose to use a Pearson correlation coefficient to 

evaluate our framework, which was recently used in a similar comparative analysis of 

metabolic models140. High correlations between steady-state flux experimental data and 

the average flux predictions would indicate that LK-DFBA can effectively predict if gene 

knockouts lead to an increase or decrease in flux for modeled reactions. The calculation 

for the Pearson correlation coefficient is shown in Equation 8, where Ai is the average of 

the predicted flux profile for the ith flux, vi is the flux value of the ith flux from the 

experimental data, 𝐴̅ is the mean across all fluxes for the average of computationally 

predicted fluxes,  𝑣̅ is the mean flux value across all fluxes for the experimental data, and 

n is double the number of fluxes that are shared between both the E. coli model and 

experimental data because it includes flux values before and after the gene knockout (n = 
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28). 

 

𝑷𝒆𝒂𝒓𝒔𝒐𝒏 𝑪𝒐𝒓𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏 𝑪𝒐𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒕 =  
∑ (𝑨𝒊−𝑨̅)(𝒗𝒊−𝒗̅)𝒏

𝒊=𝟏

√∑ (𝑨𝒊−𝑨̅)𝟐𝒏
𝒊=𝟏 ∑ (𝒗𝒊−𝒗̅)𝟐𝒏

𝒊=𝟏

   (Equation 8) 

 

4.4 Results 

4.4.1 Fitting and predicting phenotypes in synthetic models 

 We generated twenty random sets of parameters and initial conditions for the 

kinetic equations in the synthetic model to examine if different constraint approaches 

were more suitable for different models. We produced in silico metabolite concentration 

and flux data over a time interval of ten seconds by solving the ODEs in each synthetic 

system. The four constraint approaches were used for parameterization of LK-DFBA 

models to the twenty datasets. The fitted LK-DFBA models were then simulated over the 

same ten second interval using the initial conditions for each respective synthetic system 

to compare against the original ODE data. This process was performed on both noiseless 

(nT = 50, CoV = 0) and noise-added data with different sampling frequencies (nT = 50 or 

15) and levels of noise (CoV = 0.05 or 0.15). To test the ability of each LK-DFBA 

approach to predict the effects of defined genetic perturbations, we down- and up-

regulated the v2, v3, and v4 pathways in the original kinetic equations by multiplying the 

kinetic coefficient parameters (a parameters in the inset of Figure 30) by 0.5x or 2x, 

respectively, and generating new ODE data. We then simulated the LK-DFBA model 

after adjusting the fitted LK-DFBA constraints to reflect the down- or up-regulation by 

multiplying the kinetics constraint parameters by 0.5x and 2x, respectively. The NRMSE 

between the predicted LK-DFBA metabolite concentrations and the ODE concentration 
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data from the perturbed synthetic models was then calculated. 

 For the noiseless cases with no genetic perturbation (WT) as shown in the first 

row below each bold line in Figure 31, the best-fitting constraint approach (dark green) 

varied across the different models. All four approaches performed best for at least one of 

the models. When fluxes were either down- or up-regulated via in silico genetic 

perturbations and LK-DFBA models fitted to the WT ODE data were used to predict 

these changes, the best constraint approach across all perturbations (dV2 through uV4) 

was generally consistent with the best approach in the absence of perturbations. 

 When using noisy data, similar trends were observed (representative example in 

Figure 32). While the best constraint approach for WT noisy data was not always the 

same as the best approach for noiseless data, the best constraint approach for a given 

noisy WT dataset was still generally the best for predicting the impacts of in silico 

genetic perturbations in the same model (dV2 through uV4). Interestingly, noisy data 

negatively affected the performance of LK-DFBA (HP) to a much greater extent than the 

other approaches, which caused LK-DFBA (HP) to never be identified as the best 

approach in the condition with the lowest sampling frequency and highest noise (nT = 15, 

CoV = 0.15). Similar results were found under other noisy conditions (Figure 50 through 

Figure 52).  
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Figure 31: NRMSE heatmap of LK-DFBA approaches on different synthetic models 

using noiseless data.  

Each constraint approach was used to fit parameters to wild-type (WT) noiseless data (50 

timepoints) and then used to simulate the WT system and in silico genetic perturbations 

with fluxes v2, v3, or v4 down- or up-regulated. Dark green boxes represent the lowest 

NRMSE within each perturbation for each synthetic model, while dark red boxes 

represent the highest NRMSE (meaning that the dynamic range of the color scale varies 

for each perturbation for each synthetic model to better convey the relative performance 

of different methods). The cells with bolded white numbers indicate the LK-DFBA 

approach that best fits the WT data. Cells with white numbers are generally consistently 

green, indicating that fitting to WT data is a good indicator of which approach will be 

optimal across all perturbations. 
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Figure 32: NRMSE heatmap of LK-DFBA approaches on different synthetic models 

using noise-added data (nT = 15, CoV = 0.15).  

Each constraint approach was used to fit parameters to noisy (nT = 15, CoV = 0.15) wild-

type (WT) data and then used to simulate the WT system and the system with in silico 

genetic perturbations with fluxes v2, v3, or v4 down- or up-regulated. Dark green boxes 

represent the lowest average NRMSE (N = 10) within each phenotype for each synthetic 

model, while dark red boxes represent the highest average NRMSE. The cells with 

bolded white numbers indicate the LK-DFBA approach that best fits the WT data. 

 

 

We also tested the effect of smoothing the noisy (nT =  15, CoV = 0.15) 

metabolite concentration and flux time course profiles by fitting to a previously 

described100 impulse function (Figure 33). Smoothing the noisy data can often lead to 
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lower error of the final model but requires increased computation time for estimating the 

parameters of the impulse function and in certain cases can actually increase error if a 

specific dataset deviates significantly from all of the profiles that an impulse function can 

capture. The best constraint approach for WT smoothed data was the same as for 

unsmoothed data in 19 of the 20 models. As with the unsmoothed cases, the best 

constraint approach for smoothed data was typically consistent between WT and in silico 

genetic perturbations, and there were no cases where LK-DFBA (HP) performed the best 

(and it was generally the worst out of the four approaches) for smoothed data.   
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Figure 33: LK-DFBA performance on noisy synthetic model data after smoothing.  

Each constraint approach was used to fit parameters to noisy (nT = 15, CoV = 0.15) wild-

type (WT) data that was smoothed with a previously described impulse function100, and 

then used to simulate the WT system and the system with in silico genetic perturbations 

with fluxes v2, v3, or v4 down- or up-regulated. Dark green boxes represent the lowest 

average NRMSE (N = 10) within each phenotype for each synthetic model, while dark 

red boxes represent the highest average NRMSE. The cells with bolded white numbers 

indicate the LK-DFBA approach that best fits the WT data. 

 

4.4.2 Fitting and predicting phenotypes in L. lactis and E. coli models 

 For the L. lactis model, we tested the four constraint approaches on noiseless data 

and noisy data under different conditions (nT = 50 or 15, CoV = 0.05 or 0.15). On the 

noiseless data, the best constraint approach for the WT system was LK-DFBA (HP), 
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which also had the lowest NRMSE when predicting the results of perturbations to five 

different pathways (Figure 34). At high sampling frequencies and low noise (nT = 50, 

CoV = 0.05), LK-DFBA (HP) still performed the best, but as more noise was added or 

lower sampling frequencies were used, LK-DFBA (NLR) was optimal. This is consistent 

with the findings described above for the small synthetic systems where LK-DFBA (HP) 

can produce low NRMSE with noiseless data but has difficulties under more realistic 

conditions. 

 As with the L. lactis model, we tested all constraint approaches on both noiseless 

and noisy data from the E. coli model under different conditions (nT = 50 or 15, CoV = 

0.05 or 0.15). For this model, LK-DFBA (NLR) was the best constraint approach for 

noiseless data (Figure 35). Noisy E. coli data produced the same results: for all noisy 

conditions, LK-DFBA (NLR) was optimal for the WT system. It was also optimal for 

almost all of the in silico genetic perturbations, showing once again that the same 

constraint approach that was optimal for the WT system at a given sampling condition 

was generally also optimal for the perturbed systems.  
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Figure 34: NRMSE heatmaps of constraint approaches on model of L. lactis 

metabolism.  

Each constraint approach was used to fit parameters to wild-type (WT) L. lactis data and 

then used to simulate the WT system and the system with in silico genetic perturbations 

with literature-reported important pathways down- or up-regulated. Dark green boxes 

represent the lowest NRMSE within each phenotype for each model, while dark red 

boxes represent the highest NRMSE. Heatmaps show the mean of 10 noisy datasets, 

except for the noiseless condition (leftmost column).  
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Figure 35: NRMSE heatmaps of constraint approaches on model of E. coli 

metabolism.  

Each constraint approach was used to fit parameters to wild-type (WT) E. coli data and 

then used to simulate the WT system and the system with in silico genetic perturbations 

with literature-reported important pathways down- or up-regulated. Dark green boxes 

represent the lowest NRMSE within each phenotype for each model, while dark red 

boxes represent the highest NRMSE. Heatmaps show the mean of 10 noisy datasets, 

except for the noiseless condition (leftmost column).  
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We also perturbed the original parameters and initial conditions (drawing from 

the random normal distribution 𝑁𝑖 ~ (p𝑖,p𝑖) and taking the absolute value, where pi is the 

original value of the ith parameter) of the E. coli model to create five new models with 

the same topology. As with the twenty different versions of the small synthetic system, 

we found that the best constraint approach was not conserved across models with the 

same topology as the original E. coli model when tested on noiseless data (Figure 36). 

Instead, the rates of individual reactions and how they affect overall model dynamics 

appear to be important factors in determining the optimal constraint approach. 
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Figure 36: LK-DFBA performance on different models with the same stoichiometric 

topology as the E. coli model.  

Five models with the same topology as the original E. coli model were created by 

randomizing the original kinetic parameters. The four LK-DFBA approaches were 

evaluated on noiseless data generated by these new models. Dark green boxes represent 

the lowest NRMSE within each phenotype for each model, while dark red boxes 

represent the highest NRMSE. The cells with bolded white numbers indicate the LK-

DFBA approach that best fits the WT data. Cells with white numbers are generally 

consistently green, indicating that fitting to WT data is a good indicator of which 

approach will be optimal across all perturbations. 
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4.4.3 Improved LK-DFBA predictions yield qualitative consistency with experimental 

L. lactis metabolite concentration data 

 To further assess how well LK-DFBA performs when predicting different 

phenotypes, we compared the predictions of LK-DFBA to available experimental data for 

the first time. The previously described ODE-based L. lactis model was originally 

parameterized using experimental metabolite time course data from L. lactis cultures 

grown with an initial glucose concentration of 40 mM50 and validated by comparison to 

experimental data from cultures grown at initial concentrations of 20mM and 80 mM 

glucose. Here, we similarly fitted all LK-DFBA approaches to data generated by the 

ODE model at 40 mM glucose and then simulated the LK-DFBA model using the best 

constraint approach at 20 mM and 80 mM initial concentrations of glucose for validation. 

 Figure 37 depicts the metabolite concentrations predicted by LK-DFBA (HP) (the 

best approach for noiseless data in the L. lactis model) for the three initial concentrations 

of glucose when trained on noiseless data. For multiple initial glucose concentrations, 

LK-DFBA (HP) captured the general qualitative trends of glucose (depletion) and lactate 

(accumulation), two key metabolites in L. lactis that are often studied141, 142. For cofactor 

metabolites that participate in many different reactions, such as ATP, NAD(H), and 

inorganic phosphate, it was more challenging for LK-DFBA (HP) to predict their 

concentration profiles over the simulation interval, which is a problem found in other 

modeling frameworks52. Although LK-DFBA’s predictions were overall not as smooth or 

quantitatively accurate as the ODE model, this is to be expected due to the lack of a 

validated objective function for this constraint-based model; the objective function we 

used was a gross approximation that likely does not reflect the cell’s true “goal”, and it is 
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known that the objective function can significantly affect the predictions of FBA 

approaches. Nevertheless, as presented here, LK-DFBA can still qualitatively track 

important metabolite dynamics even when using a crude objective function. This is 

important to note, as many organisms that are not well-studied have no readily available 

objective function to use.  

 

 
Figure 37: Comparison of LK-DFBA metabolite concentration predictions when 

fitted to noiseless ODE data against noiseless ODE data and all available L. lactis 

experimental data.  

Panels A, B, and C depict concentration profiles for LK-DFBA (HP) and the ODE model 

compared to experimental data for initial glucose concentrations of 20 mM, 40 mM, and 

80 mM, respectively. Cofactor concentrations were more challenging to predict, 

exhibiting many spikes upwards or downwards in concentration. Cofactors were involved 

in several kinetics constraints and the spikes in concentrations were likely due to changes 

in which constraints were currently active in the linear program. Nonetheless, the 

concentrations generally remained within an order of magnitude of the experimental data. 
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 Figure 38 depicts the concentration profiles predicted by LK-DFBA (NLR) (the 

best approach for noisy data in the L. lactis model) after being fitted to 10 noisy datasets 

generated by the ODE model and simulated at 20 mM, 40 mM, and 80 mM initial 

glucose, respectively. Again, the LK-DFBA framework generally captured the qualitative 

trends of major metabolites such as glucose and lactate, though unsurprisingly not as 

accurately as when noiseless data are used and with difficulties predicting cofactor 

concentrations. Because LK-DFBA (NLR) contains quadratic constraints, its results are 

generally smoother compared to the other LK-DFBA approaches, which helped it predict 

some metabolites, such as PEP, arguably better than in the noiseless case. Furthermore, 

LK-DFBA (NLR) is less susceptible to noise for some metabolites, such as glucose and 

lactate, as observed in predicting similar time courses across the 10 noisy datasets. This 

could be advantageous if one is modeling a system with multiple noisy data sets and 

requires consistent predictions for certain metabolites. Likewise, if only using a single 

dataset, LK-DFBA (NLR) can ensure that these metabolic profiles would not 

dramatically change if a different dataset had been used. Other methods, such as the 

original LK-DFBA (LR) approach, can result in more varied predictions (Figure 39) 

depending on the noisy dataset used; some appear to produce better predictions than LK-

DFBA (NLR), while others are worse (though all predictions follow the same trends). 

These observations reiterate that the best approach is dependent on the systems and 

datasets being studied, so having multiple LK-DFBA approaches available is an 

improvement over only using the LK-DFBA (LR) framework. 
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Figure 38: Comparison of LK-DFBA metabolite concentration predictions when 

fitted to noisy data against ODE and all available L. lactis experimental data.  

A., B., and C. present concentration profiles for LK-DFBA (NLR) on 10 noisy datasets 

(nT = 15, CoV = 0.15) and the ODE model compared to experimental data for initial 

glucose concentrations of 20 mM, 40 mM, and 80 mM, respectively. The mean 

concentration profile (solid green line) is shown with each of the concentration profiles 

(solid red lines) from the 10 noisy datasets. 
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Figure 39: Comparison of LK-DFBA (LR) metabolite concentration predictions 

against ODE data and L. lactis experimental data when fitted to noisy ODE data. 

Panels A, B, and C depict concentration profiles for LK-DFBA (LR) on 10 noisy datasets 

(nT = 15, CoV = 0.15) and the ODE model compared to experimental data. The mean 

concentration profile (solid green line) is shown with each of the concentration profiles 

(solid red lines) from the 10 noisy datasets. While LK-DFBA (LR) is able to capture the 

general trends of glucose depletion and lactate accumulation, the best LK-DFBA 

approach on noisy data, LK-DFBA (NLR), showed much more consistency in its 

predictions across noisy datasets for glucose and lactate (Figure 38). 

 

4.4.4 Changes in LK-DFBA flux profiles due to gene knockouts are correlated with 

experimental E. coli steady-state flux data 

 We also compared the predictions of the best LK-DFBA approach on the E. coli 

model to experimental steady-state flux data obtained through gene knockout 

experiments by Ishii et al.137. Because the Chassagnole model, which LK-DFBA is fitted 

to, only encompasses central carbon metabolism, we focused on 13 gene knockouts and 
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14 fluxes that are included in both the Chassagnole model and the Ishii steady-state flux 

results. We used the dilution rate of 0.2 h-1 for all experimental data. To emulate a gene 

knockout in the LK-DFBA model, we down-regulated the pathway(s) that correspond 

with the gene by multiplying the parameters of the relevant constraints by 0.1x instead of 

completely removing the reaction, as we found that this sufficiently reduced the possible 

flux reaction rate without causing infeasible solutions from the solver. Additionally, it is 

not uncommon for enzymatic activity to remain in a pathway after single gene knockouts 

due to paralogous enzymes and enzyme promiscuity. Because the LK-DFBA predictions 

do not reach steady-state for the simulation time examined in this work and our previous 

work (ten seconds), we instead used the average flux of the predicted time course to 

describe how LK-DFBA’s predictions change from the wildtype to gene knockout 

phenotype. The average flux before and after a gene knockout should reflect whether the 

reaction rate generally increases or decreases across the studied time interval after a 

system perturbation. We used a Pearson correlation coefficient to determine if the 

average flux profiles predicted by LK-DFBA changed similarly to the experimental data 

after a gene knockout. This assessment method has been used previously by Lima et al. to 

compare multiple E. coli models, including the Chassagnole model, to the Ishii dataset140. 

 To evaluate how our framework compares to E. coli experimental data, we 

examined LK-DFBA (NLR), as it was the best approach in the case of low sampling 

frequency and high noise (Figure 35). Figure 40 shows the average Pearson correlation of 

the LK-DFBA (NLR) flux predictions (after being fitted to ten noisy datasets with nT = 

15 and CoV = 0.15) and the average correlation of the ODE model flux predictions with 

the experimental steady-state flux data. Of the gene knockouts and fluxes examined, LK-
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DFBA (NLR) generally gave reliable predictions for whether fluxes increased or 

decreased due to gene knockouts, with correlation values greater than 0.6 in all but two 

cases and correlations greater than 0.7 in 6 out of 13 cases. These correlations were very 

similar to the correlations yielded by the ODE-based model. In 10 out of 13 knockouts, 

the correlations calculated for LK-DFBA outperformed or were within 5% of the 

correlations calculated with the ODE-based model. These results support the significant 

promise of LK-DFBA approaches for predictivity comparable to that of standard models 

but with the additional benefits (including relative model simplicity and potential 

scalability) that accrue from using a LP-based formulation.  

 

 

Figure 40: Pearson correlation coefficients of LK-DFBA and ODE model flux 

predictions with E. coli experimental data.  

LK-DFBA (NLR) was the best approach when fitting on low sampling frequency (nT = 

15) and high noise (CoV = 0.15) data. Blue and red bars represent LK-DFBA (NLR) and 

ODE model mean correlations, respectively, between the average predicted flux profiles 

and experimental steady-state flux data for various gene knockout conditions. Gene 

knockouts in the LK-DFBA and ODE-based models were simulated by down-regulating 

relevant pathways. Error bars for LK-DFBA represent one standard deviation (N = 10 

runs). 
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4.5 Discussion 

At the outset of this work, we sought to find a single LK-DFBA constraint 

approach that would improve upon the originally published framework. Instead, we have 

shown that the best constraint approach is highly dependent on the system being 

modeled. Despite each of the 20 small synthetic models having the exact same 

stoichiometry and allosteric regulatory interactions, the optimal LK-DFBA approach 

varied for both noiseless and noisy training datasets, with one of the new constraint 

approaches performing the best in the majority of cases. This finding suggests that the 

topology of the system is less important than the emergent dynamics from the collective 

metabolic reactions. It also supports the importance of having multiple types of 

constraints to choose from, as presented in this work, to allow more accurate modeling of 

any given system.  

These conclusions are reinforced by analysis of biological systems, where LK-

DFBA (HP) performs the best on L. lactis noiseless data and LK-DFBA (NLR) performs 

the best on E. coli noiseless data (though LK-DFBA (NLR) is superior for both systems 

when using low sampling frequency and high noise data). We further confirmed that 

topology is not the determining factor by randomizing parameters in the E. coli model 

(Figure 36): again, the best constraint approach varied across these topologically identical 

new models. Many metabolic pathways are conserved topologically across many species 

(e.g. glycolysis), though the kinetic parameters within these pathways can be vastly 

different. This suggests that having multiple LK-DFBA constraint approaches to choose 

from will improve our ability to model different systems. 

While the best constraint approach varied across different model 
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parameterizations and topologies, the best approach (in terms of predicting metabolic 

phenotypes) for a given model was generally consistent across a wide range of pathway 

perturbations. This trend remained true whether using noiseless data, data with low 

sampling frequency and high noise, or noisy data that had been smoothed. These results 

instill confidence that the best constraint approach found when fitting to a wildtype 

metabolic system will also be the best approach when predicting changes to that system, 

meaning that an approach that can select the best-fitting of multiple constraint 

frameworks is viable and likely to be successful. One possible reason for the success of 

this approach is that when pathways are down- or up-regulated, it is common for only the 

nearest neighboring pathways to be significantly affected if the change to the system is 

not drastic or the perturbed pathway is not essential for cell survival, meaning that the 

emergent behavior from the system would not change too greatly and thus the same 

constraint approach would be optimal. To easily construct the optimal LK-DFBA model 

for a given biological system, we envision the workflow presented in Figure 41. After 

compiling the relevant system stoichiometry, regulatory information, and metabolomics 

and fluxomics data, one can fit each of the four LK-DFBA approaches to the data and 

determine which constraint approach most likely works best for predicting the results of 

different perturbations. 
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Figure 41: Workflow for selecting the best constraint approach for LK-DFBA when 

modeling metabolic systems.  

Dynamic Flux Estimation (DFE) is applied to the system stoichiometry and available 

metabolomics data to infer instantaneous fluxes. The system stoichiometry, 

metabolomics data, inferred flux data, and system regulatory information are then used to 

estimate parameters for each LK-DFBA approach (blue arrow). Using multiple constraint 

approaches (green arrows), four different LK-DFBA models are created and tested for 

their respective abilities to recapitulate training data. The model with the lowest error is 

selected and can be used for future in silico predictions (red arrow). 

 

 Using ODE models and experimental data from L. lactis and E. coli, we found 

that LK-DFBA can effectively predict qualitative trends in concentration profiles of some 

important metabolites. While we have previously shown that LK-DFBA captures 

metabolite dynamics in synthetic data generated by ODE models, this is the first time 

LK-DFBA predictions have been validated with experimental data. For key metabolites 

that are important inputs or outputs of the system (e.g. carbon sources or end products), 

LK-DFBA can qualitatively predict if their concentration profiles are expected to 

decrease or increase, which is an important capability if one is using LK-DFBA to 
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engineer organisms to efficiently produce certain metabolites. Cofactors, on the other 

hand, are more difficult to model using LK-DFBA but are still typically predicted to be 

within an order of magnitude of the experimental data in most cases. This capability 

could be useful when assessing levels of accumulating toxic metabolites or cofactor 

imbalances if exact concentrations are not necessary. For LK-DFBA to accurately predict 

the metabolic profiles of cofactors, additional modifications to the framework may be 

necessary to account for metabolites that are involved in multiple reactions and are 

constantly consumed and produced. 

We also found that LK-DFBA flux profile predictions were highly correlated with 

experimental flux data from genetic knockout experiments. Furthermore, these 

correlations were comparable to those found when using the ODE-based model. We note, 

though, that this comparable predictivity is limited by the fact that LK-DFBA was trained 

using ODE-generated data; if it had instead been fitted to actual metabolomics and 

fluxomics time course data used in the Ishii experiments (which is not available), these 

correlation values could possibly be even higher. Similarly, an improved objective 

function over the reasonable but arbitrary and unoptimized one used here could also lead 

to significant improvements in the performance of LK-DFBA. 

By showing for the first time that LK-DFBA can predict changes in metabolite 

concentrations and flux profiles qualitatively, we have demonstrated LK-DFBA’s 

potential as a widely-applicable metabolic modeling tool. Unlike many ODE-based 

modeling approaches that require specific kinetic equations for each flux reaction, LK-

DFBA is generalizable. With four types of kinetics constraints that account for different 

biological interaction phenomena between metabolites and fluxes, we have improved 
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LK-DFBA to be amenable to many different systems. Additionally, applying the four 

LK-DFBA approaches to these models of L. lactis and E. coli has established that our 

framework can handle various biological systems of substantial size without the need for 

computationally taxing parameter estimation steps. Because each of the four LK-DFBA 

approaches maintains an easily solvable LP or QCP structure, LK-DFBA is a prime 

candidate for being one of the first frameworks able to model a variety of genome-scale 

systems while also capturing their metabolite dynamics.  

While the addition of new constraint approaches has significantly improved the 

original LK-DFBA (LR) framework, there are still several areas where LK-DFBA can be 

improved. If computational resources when building the model are not a concern, a 

secondary optimization step can be used, as in the LK-DFBA (LR+) approach, to 

improve the parameters in each of the new constraint approaches. In addition, as 

previously noted the objective function used in LK-DFBA is also a ripe target for future 

efforts to improve this modeling framework. Here we have chosen objective functions 

that lead to the maximization of putatively important fluxes, but unlike many other 

constraint-based models, there was no specific biomass or other objective flux to use. 

Optimizing the weight of each flux or metabolite in the objective function could lead to 

even lower observed errors compared to experimental data and may also provide insight 

into what real biological systems tend to maximize. 

 

4.6 Conclusions 

In this work, we have shown that the LK-DFBA modeling framework can be 

improved by implementing more complex constraints with increased biological 
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relevance. We showed that there is no single best LK-DFBA constraint approach for all 

models, and the optimal approach depends not just on the topology of the biochemical 

system but also its kinetics and parameters. The constraint approach that performs the 

best in recapitulating training data consistently outperforms other constraint approaches 

at predicting the results of metabolic perturbations on the same system. With these new 

constraint approaches, we are able to model a variety of metabolic systems more 

accurately than if we were to just use the original LK-DFBA (LR) method. Moreover, 

based on comparisons to experimental data we showed that the improved LK-DFBA 

approaches can reasonably capture the qualitative dynamics of important metabolites and 

fluxes of interest to researchers. While these predictions may not be smooth or 

quantitative, the qualitative prediction of trends of metabolite dynamics in response to 

major perturbations is arguably the most critical aspect needed for creating metabolic 

models that give insight on how pathways can be further optimized or how metabolic 

resources can be rerouted to produce valuable chemicals: knowing that a specific 

knockout will increase or decrease flux is often sufficient to justify the expense of 

experimental implementation of such genetic perturbations. Moreover, we expect this 

computational framework to (with future effort) provide opportunities for 

computationally reasonable scale-up to the genome scale. While the acquisition of quality 

metabolomics and fluxomics data to build the constraints in LK-DFBA is still a 

challenge, the work we have presented here lays the groundwork needed to take full 

advantage of these types of datasets as they become increasingly more readily available. 
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CHAPTER 5: A Workflow Toward Modeling Dynamics in Metabolic 

Systems   
 

 

 

5.1 Introduction 

The three computational frameworks presented in the previous chapters were all 

built toward the goal of creating a comprehensive workflow for modeling metabolic 

systems, starting from the preprocessing of metabolomics data and ending with the 

construction of the model itself. While each framework was independently developed and 

may not be fully optimized to operate in unison yet, it is important to examine how the 

three platforms perform together in their current states. Not only will this further test the 

robustness of each framework, but it will also provide insight about possible areas of 

improvement that could lead to a more streamlined metabolic modeling workflow. In this 

section, I use a determined system with unknown regulation as a test case for combining 

SCOUR, MetaboPAC, and LK-DFBA to construct a metabolic model. This metabolic 

modeling workflow begins with relative abundance data that is used with SCOUR to 

predict the regulatory structure within the system. Next, this regulatory information is 

provided to MetaboPAC and the absolute concentrations are inferred from the relative 

abundances. Finally, LK-DFBA can construct a dynamic metabolic model with allosteric 

regulation using the regulatory information and absolute concentrations determined in the 

previous steps of the process. The workflow is depicted in Figure 42. 
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Figure 42: Workflow toward modeling dynamics in metabolic systems.  

In the first step of the workflow, SCOUR identifies the regulatory structure of the system 

using relative abundance metabolomics data. Next, MetabocPAC uses the identified 

regulatory information to infer absolute concentrations. Finally, the identified regulatory 

structure and inferred absolute concentrations are used with LK-DFBA to construct a 

metabolic model. 

 

5.2 Determined system with regulation 

To assess LK-DFBA, SCOUR, and MetaboPAC together, we created a 

determined system containing four metabolites, fives fluxes, and two regulatory 

interactions that were initially unknown (Figure 43). Flux v1 was assumed to be a 

constant known value. The reactions in the system were constructed using Michaelis-

Menten kinetics and different initial conditions were used with the model to generate 15 

datasets of metabolite concentration and flux time courses. Relative abundance data were 

simulated by randomly sampling 20 sets of response factors that were applied to each of 

the 15 ODE datasets for a total of 300 datasets that were used in both the SCOUR and 

MetaboPAC steps. For the LK-DFBA step of the process, only 20 datasets (simulated 

from different response factors but the same initial metabolite concentrations) were used 

to construct the LK-DFBA models and assess their ability to recapitulate the original 
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ODE data (i.e. the ODE dataset containing the true absolute concentration values and 

same initial metabolite concentrations). 

 

Figure 43: Determined system with regulation used to evaluate the metabolic 

modeling workflow. 

 

5.3 Metabolic modeling workflow 

5.3.1 Method for imputing missing metabolomics data 

Before discussing the performance of all three frameworks together, I would be 

remiss if I did not mention a method for imputing missing values in raw metabolomics 

data that I developed during my thesis. In metabolomics data, it is common for some 

values to be missing due to random analytical instrument error (these values are 

described as missing completely at random (MCAR)) or because the abundance of a 

metabolite is below the limit of detection (these values are described as missing not at 

random (MNAR)). Because missing values in metabolomics data can bias downstream 

analyses or prevent the use of many analysis methods143, researchers typically impute 

these missing values using several common methods, which include replacing missing 

values with zeros, the mean or median of all abundances, or using algorithms such as 

random forest or k-nearest neighbors (kNN)75. However, many of these imputation 
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approaches do not consider the difference between values that are MCAR and values that 

are MNAR, which can cause some missing values to be imputed inaccurately. To address 

this issue, we developed No Skip-kNN (NS-kNN)144, a modified version of the original 

kNN formulation that determines which missing values are likely MCAR or MNAR and 

imputes them appropriately. Because MNAR values stem from sensitivity limitations 

from analytical instruments, NS-kNN imputes values identified as MNAR with lower 

abundances than the original kNN methodology. While NS-kNN was not used in the 

workflow presented in this chapter, it is an important tool in metabolomics data pre-

processing and has already been shown in detail to effectively predict relative abundances 

of missing values better than several other imputation approaches. 

 

5.3.2 Identifying metabolic regulation using relative abundances 

I found that the regulation within the synthetic system could still be identified 

when using relative abundance data with SCOUR. When originally assessing SCOUR’s 

performance in Chapter 3, the metabolomics data were assumed to be in terms of 

absolute concentrations and not relative abundances. This is a significant finding, as it 

may expand SCOUR’s usability to the majority of current metabolomics datasets that 

have relative abundance values. SCOUR’s performance is likely unhindered because 

relative abundances are essentially scaled values of the true absolute concentrations. 

Using relative abundances in lieu of absolute concentration would change how quickly 

the reaction rate of a flux would appear to increase or decrease based on the abundance of 

controller metabolite(s) (versus concentration), but it would not change the underlying 

kinetics or functionality of the reaction. For example, using relative abundances would 
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not cause a reaction to appear inhibited by a metabolite if the true absolute concentration 

actually induces the reaction. One limitation of using SCOUR in its current form is that 

the true flux reaction rates must be known to accurately predict regulation. When fluxes 

in the synthetic model were estimated directly from the determined system of mass 

balances (i.e. 
𝑑𝑥

𝑑𝑡
= 𝑆 ∙ 𝑣) using relative abundances, SCOUR could not identify regulatory 

interaction effectively. 

When using SCOUR on noiseless relative abundance data (20 repetitions using 

different sets of response factors with each repetition containing relative abundance data 

simulated from 15 sets of initial conditions), we observed that SCOUR could accurately 

predict the regulatory structure of the determined system (Figure 44A). All performance 

metrics for noiseless data were above 97% when identifying interactions with one or two 

controller metabolites. For noisy data (nT = 50, CoV = 0.05), SCOUR was still able to 

identify regulatory interactions with PPVs above 65% (Figure 44B), which is similar to 

the results found with the synthetic systems in Chapter 3 under the same conditions (the 

system used in this chapter performed slightly worse for one-controller metabolite 

interactions, but slightly better for two-controller metabolite interactions). To keep this 

proof-of-principle study as simple as possible, we decided to move forward with the 

results from the noiseless data. 
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Figure 44: SCOUR performance using relative abundances from the small synthetic 

model with unknown regulation.  

Accuracy, sensitivity, specificity, and positive predictive value metrics for SCOUR on A. 

noiseless and B. noisy (nT = 50, CoV = 0.05) data when predicting one- and two-

controller metabolite interactions. Bars represent the mean performance (n = 20 for each 

set of different response factors) and error bars represent the standard error of the mean. 

 

 

5.3.3 Inferring absolute concentrations from relative abundances and identified 

regulation 

During my efforts to combine all three frameworks together, I found that SCOUR 

must be executed before MetaboPAC. When first attempting to combine all three 

frameworks together, I initially attempted to infer absolute concentrations from relative 

abundances using MetaboPAC before using SCOUR and presumed I would then identify 

the regulatory interactions in the next step. However, it soon became apparent that some 

of the penalties within the optimization approach in MetaboPAC require the regulatory 

structure of the system to be known a priori or else the penalties would be ineffective. 

For example, the correlation penalties in MetaboPAC require the number of controller 

metabolites of a reaction to be known, but if the regulation of the system is uncertain, 

these penalties cannot be accurately applied. For this reason, SCOUR must be the first 

step in the workflow so that the predicted regulatory structure can then be applied to 

MetaboPAC. 
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After identifying the regulatory topology of the determined system, we found that 

MetaboPAC was able to predict response factors with greater accuracy than randomly 

predicting response factors or using response factors of 500 when the kinetic structure of 

the system was unknown (i.e. only the optimization approach was used) (Figure 45A). If 

the kinetic equations of all reactions were assumed to be known, MetaboPAC predicted 

response factors with great accuracy (Figure 45B). 100% of the response factors were 

predicted within log2(1.3) error if the kinetic structure of the system was fully known. We 

used the identified response factors from both the optimization approach and kinetic 

equations approach to calculate sets of inferred absolute concentrations that were used 

with LK-DFBA in the next section. 

 

 
Figure 45: MetaboPAC performance on determined system with regulation.  

MetaboPAC compared to random response factors and response factors of 500 for the 

determined system with regulation using error ranges of log2(1.1), log2(1.3), and log2(1.5) 

when A. 0% and B. 100% of the kinetic equations are known. Bars represent the mean 

percent of predicted response factors within the error ranges for each method. Error bars 

represent the standard error of the mean (n = 20 for different sets of true response 

factors). 

 

 

When applying MetaboPAC in this workflow, we assumed that once the 

regulatory topology has been identified by SCOUR, the exact kinetics of the reactions 
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would also be known (if using the kinetic equations approach). In reality, there is a 

substantial amount of experimental work that needs to be performed to determine the 

kinetic formulation and kinetic parameters of a reaction, even if the substrates and 

allosteric regulators have been discovered. However, this is outside the scope of this 

thesis and the assumptions used here are reasonable for this proof-of-principle. 

Admittedly, one could argue that knowing the kinetic equations of all reactions in a 

system would defeat the need for LK-DFBA, which is why we apply both the results 

from the optimization approach and kinetic equations approach in the next section. 

However, it is important to reiterate that the results in Chapter 3 demonstrate that 

knowing only a percentage of kinetic equations can be beneficial and would further 

legitimize the use of LK-DFBA to model the remaining reactions in a system. 

 

5.3.4 Creating a metabolic model using inferred absolute concentrations and identified 

regulation  

Once both metabolite-flux interactions have been identified and absolute 

concentrations have been inferred, LK-DFBA can be applied to the determined system 

with regulation and a metabolic model can be constructed. Of the 15 ODE datasets used 

in the SCOUR and MetaboPAC steps, we chose one set (which includes 20 repetitions 

from different sets of response factors) to model with LK-DFBA. Along with the inferred 

absolute concentrations, the true flux profiles of each reaction were assumed to be 

known. We constructed four LK-DFBA models using the linear regression, non-linear 

regression, dimension reduction, and hyperplane kinetics constraint approaches and 

simulated each model using an objective function that maximized the fluxes through v4 
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and v5 (the two effluxes out of the system) to evaluate which approach could recapitulate 

the ODE data the best. Both the MetaboPAC absolute concentrations inferred using 0% 

and 100% known kinetics were applied to LK-DFBA. 

The best LK-DFBA constraint approach was able to capture the general metabolic 

trends whether 0% or 100% of the kinetic equations were known. For the 0% known 

kinetic equations results, we observed that all LK-DFBA approaches were able to capture 

the general concentration profile trends of metabolites x1 and x3, but only LK-DFBA (LR) 

and LK-DFBA (NLR) could capture the trends of metabolites x2 and x4 (Figure 46). 

Similar trends were obtained when using the inferred absolute concentrations from the 

100% known kinetics results (Figure 47). In both of these cases, LK-DFBA (LR) and 

LK-DFBA (NLR) could accurately capture the dynamics of each metabolite, though 

these two kinetics constraint approaches slightly underestimated the metabolite profile for 

x1 when using only the optimization approach. Overall, LK-DFBA (LR) performed the 

best out of all the approaches for this system when using either 0% or 100% known 

kinetics results (Table 7), closely followed by the LK-DFBA (NLR) approach. LK-

DFBA (LR) could track the metabolite dynamics of the system when 0% of the kinetics 

were known almost as closely as when 100% of the kinetics were known, highlighting 

the usefulness of the optimization approach in MetaboPAC. In Table 7, the standard error 

of the median when using the kinetic equations approach was substantially lower for each 

LK-DFBA model compared to the standard error of the median when using the 

optimization approach due to the former approach identifying similar sets of response 

factors more consistently across the repetitions. 
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Figure 46: Comparison of LK-DFBA kinetic constraints on the determined system 

with regulation using inferred absolute concentrations from the MetaboPAC 

optimization approach.  

Each LK-DFBA kinetics constraint approach was fitted to absolute concentration data (n 

= 20 for each set of response factors) inferred with MetaboPAC when 0% of the kinetic 

equations were known. The models were simulated to recapitulate the original ODE data 

and the median of these predicted metabolite concentration time course profiles was 

calculated and presented in this figure. The dashed line represents the original ODE data. 
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Figure 47: Comparison of LK-DFBA kinetic constraints on the determined system 

with regulation using inferred absolute concentrations from the MetaboPAC kinetic 

equations approach.  

Each LK-DFBA kinetics constraint approach was fitted to absolute concentration data (n 

= 20 for each set of response factors) inferred with MetaboPAC when 100% of the 

kinetic equations were known. The models were simulated to recapitulate the original 

ODE data and the median of these predicted metabolite concentration time course 

profiles was calculated and presented in this figure. The dashed line represents the 

original ODE data. 

 

 We also fit each of the LK-DFBA approaches to the original ODE data and 

assumed all regulatory interactions were known (Figure 48). Interesting, we found that 

the LK-DFBA (LR) and LK-DFBA (NLR) models trained on inferred absolute 

concentration data (using the kinetic equations approach) and predicted regulatory 

interactions were more accurate than the LK-DFBA (LR) and LK-DFBA (NLR) models 
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trained on the ODE data with the correct regulation known a priori (Table 7). However, 

the differences in accuracy are negligible and the predicted profiles are very similar, 

which is not surprising because both SCOUR and MetaboPAC had predicted regulatory 

interactions (Figure 44A) and inferred absolute concentrations (Figure 45B) with very 

high accuracy. 

 

 
Figure 48: Comparison of LK-DFBA kinetic constraints on the determined system 

with regulation using the original ODE data and assuming all regulatory 

interactions were known.  

Each LK-DFBA kinetics constraint approach was fitted to the original ODE data (n = 1). 

The models were simulated to recapitulate the original ODE data and are presented in this 

figure. The dashed line represents the original ODE data. 
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 As a negative control, we fit each of the LK-DFBA approaches to the relative 

abundance data and assumed that the regulatory topology of the system was unknown 

(i.e. SCOUR and MetaboPAC were not used) (Figure 49). We found that LK-DFBA (LR) 

and LK-DFBA (NLR) performed substantially worse on relative abundance data with 

unknown regulation compared to our previous findings. These results demonstrate that 

SCOUR and MetaboPAC are significant steps in this metabolic modeling workflow. 

Interestingly, LK-DFBA (DR) and LK-DFBA (HP) improved in this case. This can be 

explained by the negative control assumption that there is no regulation in the system, 

meaning there are no reactions with multiple controller metabolites. Thus, the kinetics 

constraints in LK-DFBA (DR) and LK-DFBA (HP) are reduced to the constraints found 

in LK-DFBA (LR), which is why the NRMSE of these three approaches is equal in the 

negative control.  
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Figure 49: Comparison of LK-DFBA kinetic constraints on the determined system 

with regulation using the relative abundance data and assuming all regulatory 

interactions were unknown.  

Each LK-DFBA kinetics constraint approach was fitted to relative abundance data (n = 

20 for each set of response factors). The models were simulated to recapitulate the 

original ODE data and the median of these predicted metabolite concentration time 

course profiles was calculated and presented in this figure. The dashed line represents the 

original ODE data. 
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Table 7: Normalized root mean square error of the median concentration profile 

predictions by each LK-DFBA kinetics constraint approach compared to the ODE 

data. 

The standard error of the median (n = 20) is provided to the right of the NRMSE for the 

conditions that used inferred absolute concentrations or relative abundances. 
 LK-DFBA (LR) LK-DFBA (NLR) LK-DFBA (DR) LK-DFBA (HP) 

NRMSE 

0% known 

kinetics 

0.0820 ± 0.0409 0.1387 ± 0.0303 1.8832 ± 0.1979 0.6070 ± 0.1118 

NRMSE 

100% known 

kinetics 

0.0397 ± 8.5766e-4 0.0513 ± 7.4302e-4 1.3288 ± 0.0104 1.6074 ± 0.0127 

NRMSE 

ODE data and 

known regulation 

0.0527 0.0582 1.2832 1.5070 

NRMSE 

Relative 

abundances and 

no regulation 

0.2991 ± 0.0018 0.2259 ± 0.0041 0.2991 ± 0.0018 0.2991 ± 0.0018 

 

 

5.4 Conclusions 

In this chapter, I have presented a proof-of-principle workflow that combines our 

three frameworks into a streamlined process for developing metabolic models. Despite 

the fact that the frameworks were developed individually and are not optimized to work 

together in their current states, the work in this chapter has illustrated that they can all be 

used collectively. Furthermore, we demonstrated that without SCOUR and MetaboPAC, 

the modeling accuracy of LK-DFBA is substantially diminished when using relative 

abundance data and no regulatory information. With some improvements, our modeling 

approach will be suitable for a variety of biological systems with little necessary a priori 

information about the system of interest. In the next chapter, we discuss in detail some of 

the key areas in each framework that should be explored to further improve their 

performances individually.  
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CHAPTER 6: Future Directions 
 

 

 

 Throughout this thesis I have presented three novel frameworks that solve some 

of the most significant challenges in modeling metabolic systems. I have developed an 

approach for identifying allosteric regulatory interactions, a method for inferring absolute 

concentrations, and improvements to a previous modeling framework. Together, these 

platforms create a cohesive workflow for modeling metabolite dynamics in systems of all 

sizes. In this chapter, I discuss the contributions of this research to the scientific 

community and several areas of improvement that should be explored in the future for 

each framework. 

 

6.1 Thesis contributions 

As stated at the outset of this thesis, the overall goal of this work was to create a 

streamlined process for modeling metabolic systems given only raw metabolomics data 

and the stoichiometry of the system. Currently, there are many different modeling 

frameworks available, but most assume that the available metabolic data used for 

modeling has already been pre-processed into a useable form and the regulation of 

reactions is known a priori. A comprehensive modeling framework that begins with 

processing of raw metabolomics data and ends with the modeling of an allosterically 

regulated system would be incredibly valuable to the modeling community and would be 

a significant step toward building a dynamic genome-scale model with metabolomics 

data. In this thesis, I have addressed three of the most important challenges facing 

metabolic modeling. 
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One of the most difficult aspects of modeling metabolic systems is that their 

regulatory topologies are often unknown, especially for systems that are not well-studied. 

To overcome this obstacle, I have developed SCOUR, a stepwise machine learning 

platform that can predict the regulatory structure of interactions. I demonstrated that 

SCOUR is particularly useful at classifying reactions that are only controlled by a single 

metabolite and can also identify two-controller metabolite interactions with accuracies 

that allow for experimental validation. SCOUR is the first machine learning approach to 

determine the allosteric regulation of metabolic systems and it will be a significant tool 

for modeling metabolic reactions accurately. 

Another challenge in metabolic modeling frameworks is that although 

metabolomics data is primed to be a significant source of information for metabolic 

models, metabolomics is often omitted from these modeling platforms because the raw 

data are presented as relative abundances. To date, there have only been a few efforts that 

attempt to infer absolute concentrations from relative abundances without the need of 

chemical standards. In this thesis, I have presented a novel method, MetaboPAC, that 

infers absolute concentrations by leveraging the mass balances within a metabolic 

system. We determined that MetaboPAC can identify response factors (used to infer 

absolute concentrations) significantly more accurately than other methods when the 

kinetic equations of reactions are known. MetaboPAC is a powerful approach that will 

allow metabolomics data to be more easily integrated into metabolic modeling 

frameworks and other metabolic tools. 

Finally, while there have been many modeling frameworks that can either model 

large-scale systems at steady-state or the metabolite dynamics of smaller-sized systems, 
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there have been very few platforms that can efficiently model metabolite dynamics at the 

genome-scale. Our group recently developed LK-DFBA, a linear programming 

framework that addresses this issue and can capture metabolite dynamics at all scales. 

However, the initial iteration of LK-DFBA uses crude approximations in its kinetics 

constraints to model the interactions between metabolites and fluxes. Here, I have present 

three new methods for constructing kinetics constraints that are more biologically 

relevant. We discovered that the optimal kinetics constraint approach was dependent on 

the system being modeled and that the best kinetics constraint approach for fitting to the 

wildtype data was typically also the best approach for predicting other metabolic 

phenotypes. Additionally, we determined for the first time that LK-DFBA could be used 

to predict general metabolic trends found in experimental data of two biological systems. 

The addition of new kinetics constraints will allow LK-DFBA to be used on a wider 

variety of metabolic systems in the future. 

We have demonstrated that by combing the methods I have designed together, we 

can develop a dynamic metabolic model starting with only relative abundance data and 

the stoichiometry of the system. While the accomplishments in these aims have taken 

major strides toward achieving a cohesive metabolic modeling workflow, there are 

several areas of improvement discussed below that should be explored to make this an 

even more viable process.  

 

6.2 Improvements to SCOUR 

To the best of our knowledge, SCOUR is the first machine learning framework to 

use metabolomics data to identify allosteric regulation in metabolic systems. In Chapter 
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2, I demonstrated that SCOUR is particularly useful at predicting reaction fluxes 

controlled by one or two metabolites and is significantly better at predicting three-

controller metabolite interactions than random classification. While these results are very 

promising, there are several avenues for improving the accuracy of SCOUR. 

 

6.2.1 Different machine learning algorithms 

In SCOUR, we use four different machine learning algorithms to construct the 

stacking classification model. In the first level of the model, random forest, k-nearest 

neighbors, shallow neural networks, and discriminant analysis were used to predict the 

set of controller metabolites that interact with a target flux. These outputs were fed to 

another discriminant analysis classifier in the second level of the stacking model that 

used the results from the four original algorithms to produce a final prediction. While 

these machine learning algorithms were found to be sufficient for the systems tested in 

this work and are some of the most common methods used in machine learning145 due to 

their robustness, there are many more algorithms that should be tested and could lead to 

improvements in prediction accuracy. More specifically, these improvements would 

allow more regulatory interactions to be identified and lead to fewer false positives, 

which is particularly important when identifying three-controller metabolite interactions. 

 One potential algorithm is the support vector machine (SVM) approach. SVMs 

classify data using hyperplanes, known as support vectors146, that separate classes by 

maximizing the distance between the data and the hyperplane. The most basic SVM 

method separates classes linearly, which can limit its effectiveness in many cases where 

non-linear classification is required. We initially tested SVM in an early version of 
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SCOUR but found it to classify metabolite-flux interactions poorly. However, there are 

many kernel functions that can be used with SVM to perform non-linear classification. 

Kernel functions transform and map the data to a different dimensional space so that 

SVM can more easily separate non-linear classes147, but it is important to note that using 

kernel functions can lead to overfitting if they are not used correctly148. 

Another classifier that could be tested in the SCOUR framework is Naïve Bayes 

classification149. Naïve Bayes is a probabilistic algorithm that uses Bayes theorem to find 

the probability that a datapoint belongs to one class or another based on the given 

predictors (i.e. features). The biggest downside of using Naïve Bayes is that it assumes 

that the predictors are independent of each other, which is often not the case (and is not 

the case with the current features used in SCOUR). Nevertheless, Naïve Bayes has been 

used in metabolomics contexts before150, 151. Depending on the data being classified, there 

are several versions of Naïve Bayes, such as Bernoulli Naïve Bayes if features are 

Boolean or Gaussian Naïve Bayes if the features are continuous and exhibit a Gaussian 

distribution. 

The second level classifier of the stacking model can accept many more than four 

inputs, so the addition of SVM, Naïve Bayes, or other machine learning algorithms could 

improve the prediction of the model. However, it is important to note that the inclusion of 

additional algorithms can also lead to bias toward specific classes of algorithms if there 

are multiple classifiers in the stacking model that are similar. 

Another possibility for improvement of the overall approach could be the 

inclusion of unsupervised algorithms. All machine learning algorithms currently used in 

SCOUR and suggested in this section are supervised methods, meaning the user provides 



147 

 

 

class “labels” for the samples in the training data (i.e. the interactions in the training data 

are labeled as true positives or true negatives). Unsupervised learning does not require 

labeled classes and categorizes the data in groups or clusters of datapoints. Because the 

autogenerated training data are already labeled, it may not be appropriate to use 

unsupervised methods in the stacking model. However, unsupervised methods may be 

useful in developing new features that could improve the classification of different types 

of metabolic interactions. This process is called feature learning152 and it can use 

unsupervised learning algorithms to identify information in the data that best separates 

true positive and true negative interactions. One common unsupervised machine learning 

method is principal components analysis128, which linearly transforms the original 

variables in the data (e.g. concentrations, reaction rates, or features) into new orthogonal 

variables called principal components that capture as much of the variance in the data in 

as few variables as possible. Another unsupervised method is k-means clustering153, 

which separates the data into k groups by identifying centroids in each group that 

optimally cluster the data. Besides feature learning, unsupervised learning methods are 

also often used in feature selection, whereby the features that contribute the most to the 

accuracy of the classification model are identified and the remaining features that do not 

contribute substantially, or even undermine classification, are removed154. 

 

6.2.2 Including more biologically relevant interactions in the training data 

 Along with creating a framework to classify metabolic interactions, we also 

developed a method for autogenerating biologically relevant training data. Metabolomics 

and fluxomics data can be difficult to obtain, which makes it a challenge to use machine 
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learning with these data, as most algorithms require an abundance of training 

information. The autogeneration method addresses this problem by emulating a multitude 

of different biological-like metabolite concentration and flux profiles. Our results 

demonstrate that these autogenerated datasets were able to successfully train the 

classification models used in SCOUR to predict regulatory interactions. To further 

improve the autogeneration method, some of the formulations for generating data could 

be modified. 

 To generate flux data, we use BST kinetic equations as the basis for all reactions 

in the autogeneration process. We chose to use BST because it is regarded as an all-

purpose metabolic modeling approach that is flexible and can capture the kinetics of 

many different types of reactions97. However, many metabolic models use other types of 

kinetics, such as Michaelis-Menten or Hill kinetics, because they more closely represent 

the behavior of enzymes155. The two biological systems used to assess SCOUR use a 

mixture of Michaelis-Menten, Hill, and mass action kinetics, so it is possible that using 

other kinetic formulations in place of or in addition to BST would improve the potential 

for the autogenerated training data to lead to predictions of different types of metabolic 

interactions. In the future, when metabolomics and fluxomics data become more readily 

available, real data could supplement the autogenerated training data and provide 

additional insight about how biological interactions function and should be modeled. 

 

6.2.3 Modification of autogeneration methods to include topological information 

 With all machine learning frameworks, there is always potential for improvement 

by adding or adjusting the features used to characterize the samples. Across the different 
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steps of SCOUR, we created different features that were specific to the number of 

putative controller metabolites that were being examined. One group of features that are 

not currently used in SCOUR but could be potentially applied across all steps are features 

that represent topological information about the system. The topology of the system 

could pertain to only the metabolites, the fluxes, or a combination of both.  

Many possible topological features stem from graph theory, including the number 

of edges, centrality score, network diameter, network density, and vertex betweenness 

centrality156. Topological features have been previously used in other biological contexts 

with machine learning to predict novel metabolic pathways99. Because the topology of 

metabolites and fluxes is one of the defining features of a metabolic system, including 

this information could significantly improve the ability of SCOUR to identify regulatory 

interactions. The basis of including topological features is that reactions with similar 

topologies could also have comparable regulatory structures. 

In its current state, SCOUR is unable to use topological information as features 

because the autogenerated training data has no inherent topology. As mentioned in the 

previous section, as both metabolomics and fluxomics data become more available, 

SCOUR is primed to use biological data as training data and topological features can then 

be implemented. Alternatively, the autogenerated training data method could be modified 

to include some pseudo-topological information for each artificial interaction. If 

topological information can be incorporated within SCOUR, several new types of 

features could be introduced to boost the accuracy of the framework 
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6.2.4 Using SCOUR on experimental data 

 To continue to prove SCOUR is a viable framework for identifying regulatory 

interactions, the next step is to test SCOUR on experimental data. Up to this point, we 

have assessed SCOUR on data simulated from two biological models and have added 

noise to emulate realistic data. When moving to experimental data, SCOUR should first 

be used on a well-studied system, such as E. coli, where the regulatory topology is well 

known. This will allow us to determine if SCOUR can truly identify regulatory 

interactions that are already known. Once this has been achieved, SCOUR can be used on 

other metabolic systems to discover new regulatory interactions that have not been 

established in the literature. Each of the new regulatory interactions predicted by SCOUR 

will need to be experimentally validated and through this process we can determine how 

many of these predicted interactions truly exist in the system. 

 

6.3 Improvements to MetaboPAC 

As the novelty of MetaboPAC is significant and the work presented in this thesis 

demonstrates its feasibility in a proof-of-principle context, the simplifying assumptions 

made in its implementation are well within reason. However, these assumptions entail 

some limitations that should be addressed in future work. 

 

6.3.1 Non-linear relationships 

 Perhaps the biggest assumption of MetaboPAC is that the relationship between 

relative abundances and their absolute concentrations is linear. However, in reality some 

of these relationships may be nonlinear. Unlike LK-DFBA, which requires equality and 
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inequality constraints to be strictly linear (or quadratic if using the NLR method) to 

maintain an LP (or QP) structure, MetaboPAC does not use linear programming and 

already contains non-linearities within both the optimization and kinetic equations 

approach. This makes it easy to integrate non-linear absolute concentration relationships 

in MetaboPAC, whether they are simple polynomials or more complex. While the 

implementation of non-linear relationships is straightforward, determining which 

response factors should have linear or non-linear relationships is more difficult if not 

known a priori. 

 In the simplest non-linear scenario, we can assume that the equation used to infer 

absolute concentrations takes the form: 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 = (𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛)𝑝 × 𝑅𝐹𝑇  (Equation 9) 

 

where p is some parameter that defines the non-linear relationship and RFT is the true 

response factor. For linear relationships, p is set to one and this equation reduces to 

Equation 5. With the inclusion of p, the total number of parameters that need to be 

inferred (including the response factors) doubles. This will likely slow down MetaboPAC 

and make it more difficult to identify the response factors because not only are there 

more parameters, but it is also possible that identifiability of p could be more difficult 

(i.e. there are multiple values of p that are optimal). Nevertheless, the original underlying 

framework is still sound. The roles of the mass balances in the kinetic equations approach 

and the penalties in the optimization approach should not change whether the relationship 

between absolute concentrations and their relative abundances is linear or non-linear, 
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meaning that the biggest necessary adjustment is the implementation of  Equation 9 in the 

mass balances and optimization penalties. One important matter to consider in the kinetic 

equations approach is that because there are double the number of parameters (i.e. 

unknowns), it is more likely for the system of non-linear equations to be 

underdetermined, and thus there may not be a unique solution for the response factors. A 

higher percentage of known kinetic equations or inclusion of more timepoints may be 

necessary to avoid this pitfall when considering non-linear relationships. 

 

6.3.2 General improvements to the optimization approach 

 Both the kinetic equations approach and optimization approach are currently 

essential components of MetaboPAC. However, it is unsurprising that the kinetic 

equations approach can predict more accurate response factors, as it uses more 

mathematical and biological information. Unfortunately, in many biological systems, the 

kinetics of reactions are not generally known, making it critical to improve the 

optimization approach for effective predictions when there is minimal a priori biological 

knowledge. In some cases where 0% of the kinetics are known, we have observed that 

MetaboPAC still outperforms random response factors and response factors of 500, 

which illustrates that the optimization approach can be effective alone. There are a few 

opportunities to explore to improve the effectiveness of the optimization approach. 

 Because the principle behind the optimization approach is to eliminate response 

factors that infer absolute concentrations (and indirectly infer fluxes) that are not 

biologically feasible, there are several options for identifying infeasible response factors. 

First, any additional constraints to the minimum and maximum possible metabolite 
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concentrations and fluxes can greatly constrain the amount of allowable response factors 

when used in conjunction with the current penalties. However, this entails biological 

insight or information that may often not be available. Second, there have been other 

efforts in the FBA space that have attempted to remove flux distributions that are 

biologically infeasible whose methods could be translated to MetaboPAC. For example, 

several approaches have been developed to remove fluxes that are thermodynamically 

unlikely37, 38 or have improbable metabolic energy totals (calculated as the norm of the 

flux distribution)157. Employing these methods in MetaboPAC could eliminate some 

unlikely response factors, but it is important to note that some of these methods assume 

that absolute concentrations are already known and thus would need to be adjusted 

accordingly to use relative abundances. Finally, the penalties used in the optimization 

approach could be further improved, whether it is the addition of new penalties that can 

identify poor response factors or adjusting the weights of each penalty. 

 

6.3.3 Developing a platform for predicting confidence in inferred response factors  

One significant extension to MetaboPAC that would improve its usability is a 

method for predicting the confidence in its inferred response factors. From our results, we 

found that the response factors identified when using the kinetic equations approach were 

relatively stable for all metabolites across the 48 repetitions of the non-linear least-

squares solver with different initial seeds. In contrast, we observed that the optimization 

approach was often able to predict response factors for some metabolites more easily than 

others. The effectiveness of the penalties in the optimization problem are likely better for 

certain metabolite-flux interactions, which could narrow the range of biologically feasible 
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response factors for those particular metabolites. This would cause the width of the 

distribution of possible response factors in the 48 repetitions to be thinner for these 

metabolites and possibly increase the prediction accuracy when calculating the median of 

the response factor distribution. 

To improve the usefulness of MetaboPAC, an auxiliary framework should be 

developed that assesses the confidence in the predictions generated by the optimization 

approach based on the distributions for each response factor. For example, thinner 

distributions would suggest higher confidence, whereas a wide distribution would signal 

low confidence. Other characteristics of the distribution of response factors that could be 

useful for predicting confidence include the standard deviation of the distribution, the 

number of peaks in the distribution, and the normality of the distribution. We currently 

only have an overall sense of the accuracy of the response factors inferred by 

MetaboPAC, but do not know which individual response factors are closest to their true 

values. Creating a platform for determining the confidence in the results produced by 

MetaboPAC would allow one to infer absolute concentrations of only metabolites for 

which the response factors were predicted with high confidence. 

 

6.4 Further improvements to LK-DFBA 

In this thesis, we have significantly improved on the original LK-DFBA 

framework, introducing three new approaches for constructing kinetics constraints. We 

have also demonstrated for the first time that LK-DFBA is a feasible platform for 

predicting different metabolic phenotypes in two biological systems. Because it is the 

kinetics constraints that allow LK-DFBA to capture metabolite dynamics, up to this point 
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we have focused on how these kinetics constraints can be improved. However, along with 

the constraints that define the feasible search space of the linear program, the objective 

function is the other key component in a CBM. Here, we discuss how optimizing the 

objective function in LK-DFBA could significantly improve modeling performance. 

In CBMs, most stoichiometric matrices of biological systems are underdetermined 

(i.e. there are a greater number of reactions than metabolites), meaning there are an 

infinite number of possible flux profile solutions to the problem. To identify the most 

plausible flux profile, an objective function is used that is often based on some cellular 

goal, such as maximizing biomass. One could argue that because the objective function 

identifies a single best solution, it is as important as the equality and inequality 

constraints that define the feasible search space in the LP. 

In our work to improve LK-DFBA with new kinetics constraints, we tested LK-

DFBA on one synthetic system and two biological systems. For the synthetic system, we 

chose the only efflux out of the system as the objective function, as it seemed the most 

logical choice. For the L. lactis system we assumed the objective function was to 

maximize lactate production and for the E. coli system we assumed the objective function 

was to maximize all of the effluxes out of the cell. CBMs of biological systems typically 

use an objective function that maximizes a dedicated biomass flux reaction158, but 

because we constructed the biological LK-DFBA models using information from two 

kinetic models rather than constraint-based models, there was no predetermined objective 

function. Nevertheless, the objective function we chose led to results sufficient to 

demonstrate that LK-DFBA could model metabolite dynamics in both organisms. 

However, the accuracy of the models could be improved if each objective function were 
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optimized instead of using our best guesses. In addition to examining how the objective 

function in LK-DFBA can be optimized, in this section we also discuss how modeling of 

cofactor metabolites can be improved and how LK-DFBA can be applied to metabolic 

engineering. 

 

6.4.1 Existing methods for optimizing objective functions 

 Optimizing objective functions is not a novel idea in the realm of metabolic 

modeling. There have been several works that address the issue of objective function 

optimization, including ObjFind130 and BOSS131. ObjFind creates a bilevel optimization 

problem that simultaneously attempts to maximize an objective function and minimize 

the flux distribution error between predicted and experimental data. This optimization 

approach identifies the optimal weights of the objective function that best fit the data (the 

c vector in Equation 1). BOSS is another bilevel optimization approach similar to 

ObjFind. Instead of determining the weights of available fluxes in the system, BOSS 

creates an additional flux that has the sole purpose of acting as the objective function. 

This extra flux term allows for more flexibility than ObjFind because it allows the 

stoichiometric amounts of individual metabolites to be more readily configured within 

the objective function. More recently, proteomics data have been used to determine the 

most essential fluxes in an objective function, arguing that the maximization of biomass 

is not suitable in certain conditions, such as when a cell is under stress158. Another 

approach was developed to complement DFBA by testing various objective functions 

simultaneously and pinpointing the best without the use of a bilevel optimization 

problem159. Applying these optimization methods to the objective function in LK-DFBA 
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could significantly improve modeling accuracy. 

 

6.4.2 Optimizing the objective function in LK-DFBA 

 There are two obstacles that must be addressed in order to use ObjFind or BOSS 

with LK-DFBA. First, LK-DFBA contains novel linear kinetics constraints not found in 

the prototypical FBA framework, which can be challenging to implement within the 

bilevel optimization. Second, the solution vector in ObjFind and BOSS is a single set of 

flux values, while the solution vector in LK-DFBA is a time course of metabolite 

concentrations and flux values. If one were to use ObjFind or BOSS on LK-DFBA as is, 

the two optimization frameworks would identify an objective function that tries to 

simultaneously maximize metabolite concentrations and fluxes (whereas the current LK-

DFBA only maximizes one or the other) and the objective function would simultaneously 

consider metabolites and fluxes across all timepoints as independent measures. As a 

result, different metabolites and fluxes could be maximized at different timepoints. While 

biologically it is possible and even likely that the cellular objective may not always be 

constant, it is unlikely to deviate in a short time span; this limitation would not be 

accounted for if one were to directly apply ObjFind and BOSS to LK-DFBA. 

 In an attempt to create a framework similar to ObjFind and BOSS that could work 

with LK-DFBA, I created two optimization approaches to search for the ideal objective 

function. To emulate ObjFind, the first approach attempted to optimize the weights of the 

c vector (Equation 1) for the available fluxes by minimizing the error between ODE data 

and the predictions generated by an LK-DFBA model fitted to the ODE data. In the 

second approach, instead of adjusting the weights for the c vector for the available fluxes, 
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a new flux was created and the stoichiometric contributions of each metabolite to the 

biomass was optimized, similar to BOSS. Like the first approach, the second approach 

minimized the prediction errors of the LK-DFBA model. 

 When I tested these two approaches on a small synthetic model as well as a model 

of E. coli, it quickly became apparent that the optimizer could easily become trapped at 

local minima. Unlike ObjFind and BOSS, which uses the duality principle in their bilevel 

optimizations to simultaneously identify the best objective function and the optimal 

solution to the FBA linear program, the approaches I have created are two nested 

optimization problems that are solved in serial. The objective functions determined by 

my approaches were not consistent across repetitions and did not seem to have any 

biological relevance for the E. coli model. For example, when using the first approach, 

there did not seem to be a preference for maximining any of the effluxes, which one 

might otherwise expect. 

One important point to note is that when optimizing these objective functions, the 

LK-DFBA model used parameters estimated using the LR approach, which does not 

require an objective function to be known for parameter estimation. If using the LR+ 

approach, which has been shown to recapitulate training data better than the LR method, 

it is important to note that LR+ estimates parameters by minimizing the error between 

LK-DFBA and the training data, meaning LR+ uses an LK-DFBA objective function to 

predict metabolite and flux time course data during parameterization. If the LR+ 

approach is used during objective function optimization, whether the kinetics constraint 

parameters are identified before optimization of the objective function begins or at the 

same time will need to be considered. 
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 While my initial attempts to optimize the objective function of LK-DFBA were 

unsuccessful, this undertaking should be reexamined in the future as it is a key area 

where LK-DFBA could be improved. With some modifications to ObjFind or BOSS, the 

kinetics constraints of LK-DFBA could be incorporated into the bilevel optimization 

problem, similar to the typical FBA flux constraints already included in both frameworks. 

Additionally, instead of creating a single linear program within LK-DFBA that includes 

all timepoints together, LK-DFBA could be reformulated so that each individual 

timepoint would be part of a separate linear program. This would possibly allow ObjFind 

or BOSS to more easily determine an optimal objective function at a single point in the 

time course that could then be applied to all timepoints. However, dividing LK-DFBA 

into separate timepoints would fundamentally change how the framework determines the 

optimal concentration and flux distributions and would need to be explored in more 

depth. 

 

6.4.3 Improving predictions of cofactor metabolite concentrations 

 In Chapter 4, we determined that LK-DFBA could capture the metabolite 

dynamics of a few key metabolites in the biological systems examined. However, LK-

DFBA struggled to accurately predict changes in cofactor concentrations. Cofactors, such 

as NADH and ATP, are involved in many different reactions, leading LK-DFBA to often 

predict that these metabolites are rapidly accumulating and depleting. Before it can 

become a widely used metabolic modeling framework, LK-DFBA will need to be able to 

model these cofactors and there are a few possible changes to LK-DFBA that could 

improve its accuracy when predicting the concentrations of these metabolites. 
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 Because cofactors often participate in multiple reactions either as substrates or 

products, calculating the change in concentration of these metabolites involves many 

different kinetics constraints within LK-DFBA. On the other hand, other metabolites, 

such as lactate in the L. lactis model, only require a single constraint to calculate 

metabolite accumulation or depletion, which makes tracking these metabolites easier 

(Figure 37). A method for combining the constraints used to calculate the accumulation 

or depletion of cofactors into a single constraint could improve the predictions of these 

metabolite concentrations. Unlike the dimension reduction and hyperplane approaches in 

Chapter 4, which create a single constraint for reactions with multiple controller 

metabolites, this new approach would create a single constraint for multiple reactions. 

While this method could make it easier to track the dynamics of cofactors, it will be 

important to ensure that a single kinetics constraint does not oversimplify the framework. 

 Another possible approach for improving the prediction performance of cofactor 

concentrations is to add new constraints to the linear program that limit the change in 

concentration of these metabolites across each timepoint. These cofactors currently 

accumulate and deplete at rates that are not biologically likely. By restricting how quickly 

these concentrations can change based on the training data, LK-DFBA could more 

accurately model the behavior of these cofactors. 

 

6.4.4 Using LK-DFBA in metabolic engineering 

 In this thesis, we have demonstrated that LK-DFBA can capture the general 

trends of different metabolic phenotypes in biological systems. As we continue to 

improve LK-DFBA, we will soon be able to use it as a tool for metabolic engineering. 
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We have already determined that LK-DFBA can predict some changes in metabolism 

when genetic perturbations are introduced to a system, but we have not tried to use LK-

DFBA models to engineer an organism to efficiently produce a specific metabolite. 

Because LK-DFBA retains a linear programming structure, we envision that it could be 

integrated with current FBA strain design tools, including OptKnock126, which identifies 

genetic knockouts for the overproduction of chemicals of interest. Like ObjFind for 

optimizing objective functions, OptKnock also uses a bilevel optimization structure and 

the same concerns discussed in the previous section will need to be investigated. Because 

OptKnock only focuses on gene knockouts and no other types of genetic perturbations 

that could add complexity, it is an ideal platform when first exploring how LK-DFBA 

can be used for strain design. Incorporating LK-DFBA in OptKnock is a critical first step 

toward demonstrating LK-DFBA can be a useful modeling framework for metabolic 

engineering and other applications in the future. 

 

6.5 Closing remarks 

The work presented in this thesis addresses three of the greatest challenges when 

attempting to model metabolic systems using metabolomics data. First, I introduced a 

stepwise machine learning platform for identifying the allosteric regulatory structure of 

metabolic systems, which is often unknown but critical to building accurate models. 

Second, I developed a novel method for inferring absolute concentrations from raw 

metabolomics data by leveraging the mass balances in a metabolic system. Finally, I 

presented improvements to the kinetics constraints in LK-DFBA and demonstrated for 
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the first time that the modeling framework can predict different phenotypes in two 

biological systems. 

SCOUR, MetaboPAC, and LK-DFBA are each of significant importance in the 

process of developing metabolic models. The regulatory interactions predicted by 

SCOUR can lead to more accurate modeling of metabolic systems and the absolute 

concentrations inferred by MetaboPAC will improve the ability to integrate 

metabolomics data with computational tools. The new kinetics constraints implemented 

in LK-DFBA allow the framework to model a wider variety of metabolic systems. When 

combined together, these three platforms create a cohesive workflow that starts with the 

pre-processing of metabolomics data and ends with a fully constructed dynamic model 

with integrated allosteric regulatory information.  

In this chapter, we have discussed several suggested areas to explore that could 

further improve SCOUR, MetaboPAC, and LK-DFBA. Even with each framework in its 

current state, we have already determined that they can be used together to model a 

simple, yet meaningful, metabolic system. As the amount of available metabolomics data 

continues to rapidly expand, this cohesive workflow will be ready to take advantage of 

these data toward building predictive dynamic metabolic models.  
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Figure 50: LK-DFBA performance on noisy synthetic model data, nT = 50, CoV = 

0.05. 

Each constraint approach was used to fit parameters to noisy (nT = 50, CoV = 0.05) wild-

type (WT) data and then used to simulate the WT system and the system with in silico 

genetic perturbations with fluxes v2, v3, or v4 down- or up-regulated. Dark green boxes 

represent the lowest average NRMSE (N = 10) within each phenotype for each synthetic 

model, while dark red boxes represent the highest average NRMSE. The cells with 

bolded white numbers indicate the LK-DFBA approach that best fits the WT data. Cells 

with white numbers are generally consistently green, indicating that fitting to WT data is 

a good indicator of which approach will be optimal across all perturbations. 
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Figure 51: LK-DFBA performance on noisy synthetic model data, nT = 50, CoV = 

0.15. 

Each constraint approach was used to fit parameters to noisy (nT = 50, CoV = 0.15) wild-

type (WT) data and then used to simulate the WT system and the system with in silico 

genetic perturbations with fluxes v2, v3, or v4 down- or up-regulated. Dark green boxes 

represent the lowest average NRMSE (N = 10) within each phenotype for each synthetic 

model, while dark red boxes represent the highest average NRMSE. The cells with 

bolded white numbers indicate the LK-DFBA approach that best fits the WT data. Cells 

with white numbers are generally consistently green, indicating that fitting to WT data is 

a good indicator of which approach will be optimal across all perturbations. 
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Figure 52: LK-DFBA performance on noisy synthetic model data, nT = 15, CoV = 

0.05. 

Each constraint approach was used to fit parameters to noisy (nT = 15, CoV = 0.05) wild-

type (WT) data and then used to simulate the WT system and the system with in silico 

genetic perturbations with fluxes v2, v3, or v4 down- or up-regulated. Dark green boxes 

represent the lowest average NRMSE (N = 10) within each phenotype for each synthetic 

model, while dark red boxes represent the highest average NRMSE. The cells with 

bolded white numbers indicate the LK-DFBA approach that best fits the WT data. Cells 

with white numbers are generally consistently green, indicating that fitting to WT data is 

a good indicator of which approach will be optimal across all perturbations.  
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