50 research outputs found

    Nature of Oil Price Shocks and Monetary Policy

    Get PDF
    We investigate the nature of oil price shocks to the Korean economy in recent years and find that the recent hike in oil price is induced by the increase in oil demand in contrast to the previous years when oil price run-up is mostly from supply disruptions. We also study how monetary responses to oil price shocks affect economic stability and find that an accommodative policy yields more stable outcomes.

    HARQ Buffer Management: An Information-Theoretic View

    Full text link
    A key practical constraint on the design of Hybrid automatic repeat request (HARQ) schemes is the size of the on-chip buffer that is available at the receiver to store previously received packets. In fact, in modern wireless standards such as LTE and LTE-A, the HARQ buffer size is one of the main drivers of the modem area and power consumption. This has recently highlighted the importance of HARQ buffer management, that is, of the use of buffer-aware transmission schemes and of advanced compression policies for the storage of received data. This work investigates HARQ buffer management by leveraging information-theoretic achievability arguments based on random coding. Specifically, standard HARQ schemes, namely Type-I, Chase Combining and Incremental Redundancy, are first studied under the assumption of a finite-capacity HARQ buffer by considering both coded modulation, via Gaussian signaling, and Bit Interleaved Coded Modulation (BICM). The analysis sheds light on the impact of different compression strategies, namely the conventional compression log-likelihood ratios and the direct digitization of baseband signals, on the throughput. Then, coding strategies based on layered modulation and optimized coding blocklength are investigated, highlighting the benefits of HARQ buffer-aware transmission schemes. The optimization of baseband compression for multiple-antenna links is also studied, demonstrating the optimality of a transform coding approach.Comment: submitted to IEEE International Symposium on Information Theory (ISIT) 2015. 29 pages, 12 figures, submitted to journal publicatio

    NeFL: Nested Federated Learning for Heterogeneous Clients

    Full text link
    Federated learning (FL) is a promising approach in distributed learning keeping privacy. However, during the training pipeline of FL, slow or incapable clients (i.e., stragglers) slow down the total training time and degrade performance. System heterogeneity, including heterogeneous computing and network bandwidth, has been addressed to mitigate the impact of stragglers. Previous studies split models to tackle the issue, but with less degree-of-freedom in terms of model architecture. We propose nested federated learning (NeFL), a generalized framework that efficiently divides a model into submodels using both depthwise and widthwise scaling. NeFL is implemented by interpreting models as solving ordinary differential equations (ODEs) with adaptive step sizes. To address the inconsistency that arises when training multiple submodels with different architecture, we decouple a few parameters. NeFL enables resource-constrained clients to effectively join the FL pipeline and the model to be trained with a larger amount of data. Through a series of experiments, we demonstrate that NeFL leads to significant gains, especially for the worst-case submodel (e.g., 8.33 improvement on CIFAR-10). Furthermore, we demonstrate NeFL aligns with recent studies in FL.Comment: 21 page

    Large thickness dependence of the carrier mobility in a transparent oxide semiconductor, La-doped BaSnO3

    Get PDF
    We report herein that the carrier mobility of the 2%-La-doped BaSnO3 (LBSO) films on (001) SrTiO3 and (001) MgO substrates strongly depends on the thickness whereas it is unrelated to the lattice mismatch (+5.4% for SrTiO3, -2.3% for MgO). Although we observed large differences in the lattice parameters, the lateral grain size (~85 nm for SrTiO3, ~20 nm for MgO), the surface morphology and the density of misfit dislocations, the mobility increased almost simultaneously with the thickness in both cases and saturated at ~100 cm2 V-1 s-1, together with the approaching to the nominal carrier concentration (=[2% La3+]), clearly indicating that the behavior of mobility depends on the film thickness. The present results would be beneficial to understand the behavior of mobility and fruitful to further enhance the mobility of LBSO films.Comment: 15 pages, including 4 figure

    Buffer layer-less fabrication of high-mobility transparent oxide semiconductor, La-doped BaSnO3

    Get PDF
    Transparent oxide semiconductors (TOSs) showing both high visible transparency and high electron mobility have attracted great attention towards the realization of advanced optoelectronic devices. La-doped BaSnO3 (LBSO) is one of the most promising TOSs because its single crystal exhibits a high electron mobility. However, in the LBSO films, it is very hard to obtain high mobility due to the threading dislocations, which are originated from the lattice mismatch between the film and the substrate. Therefore, many researchers have tried to improve the mobility by inserting a buffer layer. While the buffer layers increased the electron mobilities, this approach leaves much to be desired since it involves a two-step film fabrication process and the enhanced mobility values are still significantly lower than single crystal values. We show herein that the electron mobility of LBSO films can be improved without inserting any buffer layers if the films are grown under highly oxidative ozone (O3) atmospheres. The O3 environments relaxed the LBSO lattice and reduced the formation of Sn2+ states, which are known to suppress the electron mobility in LBSO. The resultant O3-LBSO films showed improved mobility values up to 115 cm2 V-1 s-1, which is among the highest in LBSO films on SrTiO3 substrates and comparable to LBSO films with buffer layers.Comment: 16 pages including 5 figure

    On-chip Brillouin lasers based on 10 million-Q chalcogenide resonators without direct etch process

    Get PDF
    We present a new device platform which defines on-chip chalcogenide waveguide/resonators without directly etching chalcogenide. Using our platform, we have demonstrated chalcogenide ring resonators with record high Q-factor exceeding 1.1x107 which is 10 times larger than previous record on on-chip chalcogenide resonators. A ring cavity is designed and fabricated for Stimulated Brillouin lasing on our platform. Thanks to the high-Q factor, Brillouin lasing with threshold power of 1 mW is demonstrated. This value is more than an order of magnitude improvement than previous world record for on-chip chalcogenide Brillouin lasers. We also developed an efficient and flexible method for resonator waveguide coupling with our device platform. Coupling between a resonator and a waveguide can be varied from under coupled region to over-coupled regio
    corecore