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In this study, we report that the carrier mobility of 2%-La-doped BaSnO3 (LBSO) films on (001)

SrTiO3 and (001) MgO substrates strongly depends on the thickness, whereas it is unrelated to the

film/substrate lattice mismatch (þ5.4% for SrTiO3 and �2.3% for MgO). The films exhibited large

differences in lattice parameters, lateral grain sizes (�85 nm for SrTiO3 and �20 nm for MgO),

surface morphologies, threading dislocation densities, and misfit dislocation densities. However,

the mobility dependences on the film thickness in both cases were almost the same, saturating at

�100 cm2 V�1 s�1, while the charge carrier densities approached the nominal carrier concentration

(¼[2% La3þ]). Our study clearly indicates that the carrier mobility of LBSO films strongly depends

on the thickness. These results would be beneficial for understanding the carrier transport properties

and fruitful to further enhance the mobility of LBSO films. Published by AIP Publishing.
https://doi.org/10.1063/1.5033326

Transparent oxide semiconductors (TOSs) showing high

optical transparency and high electrical conductivity have

been applied as active materials in wide-scale advanced

electronic device applications.1,2 Recently, there has been

growing interest on La-doped BaSnO3 (LBSO; bandgap, Eg

� 3.5 eV) with a cubic perovskite structure (a¼ 4.115 Å) as

a novel TOS because flux-grown LBSO single crystals

exhibited a very high mobility of 320 cm2 V�1 s�1 (carrier

concentration, 8� 1019 cm�3) at room temperature (RT).3,4

Such high mobility is originated from its small carrier effec-

tive mass (m*¼ 0.40 me
5) and long carrier relaxation time.6

Therefore, many researchers have tried to prepare high mobil-

ity LBSO epitaxial films to date, but the observed mobility has

been low compared to that of single crystals.7–16

Recently, Paik et al. obtained the highest mobility of

183 cm2 V�1 s�1 in a LBSO film on DyScO3 (a¼ 3.943 Å

and Da¼þ4.2%).7 Raghavan et al. also achieved high mobi-

lities of 150 cm2 V�1 s�1 and 100 cm2 V�1 s�1 in LBSO films

deposited by the high purity molecular beam epitaxy (MBE)

technique on PrScO3 (a¼ 4.026 Å and Da¼þ2.18%) and

SrTiO3, respectively.8 Lebens-Higgins et al. reported mobility

values up to 81 cm2 V�1 s�1 in LBSO films grown on TbScO3

(110) (a¼ 3.958 Å and Da¼þ3.97%) by MBE.9 A low

mobility value of 10 cm2 V�1 s�1 was also reported by

Wadekar et al. in a LBSO film on SmScO3 (110) (a¼ 3.991 Å

and Da¼þ3.1%).10 These studies attributed the origin of

the low mobility to the misfit/threading dislocations, which

are generated from a large lattice mismatch (Da) at the film/

substrate interface (i.e., Da¼þ5.4% for the LBSO/SrTiO3

interface).11–14

In order to minimize Da, a buffer layer deposition on a

substrate was also investigated.15–20 Shin et al. used an

undoped BaSnO3 film as a buffer layer (150 nm thick) on

MgO by the pulsed laser deposition (PLD) technique and

obtained a mobility of 97.2 cm2 V�1 s�1.17 Another study by

Shiogai et al. reported a mobility of 80 cm2 V�1 s�1 with

(Sr, Ba)SnO3 buffer (200-nm-thick) deposited by PLD on

SrTiO3.15 Lee et al. have used the flux grown undoped

BaSnO3 (001) single crystal as a substrate, but the resulting

mobility was <100 cm2 V�1 s�1.16 These contradict the

hypothesis regarding the misfit/threading dislocations since

there was almost no lattice mismatch between the substrate

and the film.

Several studies suggest that cation off-stoichiometry or

cation mixing can introduce charge point defects21–23 and

dislocations, which act as scattering sources and thus sup-

press the mobility. However, the origin of the limited elec-

tron mobility in LBSO thin films has not been clearly

explained to date, and a fundamental study on other factors

such as the film thickness is required to understand this phe-

nomenon. Therefore, in this study, we analyzed the structural

and electrical features of epitaxial LBSO (La0.02Ba0.98SnO3)

films with various thicknesses (14–1040 nm), which were

grown on (001) perovskite SrTiO3 (Da¼þ5.4%) and non-

perovskite (001) MgO (Da¼�2.3%) by PLD.

Here, we report that the carrier mobility of the LBSO

films strongly depends on the thickness, whereas it is unre-

lated to the lattice mismatch. Although we observed large

differences in lattice parameters, lateral grain size, the den-

sity of threading dislocations, the surface morphology, and

the density of misfit dislocations, the mobility increased

almost simultaneously with the thickness in both cases and

saturated at �100 cm2 V�1 s�1, together with approaching to
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the nominal carrier concentration (¼[2% La3þ]), clearly

indicating that the behavior of mobility depends on the film

thickness. The present results would be beneficial to under-

stand the behavior of mobility and fruitful to further enhance

the mobility of La-doped BaSnO3 thin films.

Epitaxial La0.02Ba0.98SnO3 films with thicknesses vary-

ing from 14 nm to 1.04 lm were heteroepitaxially grown

on (001) SrTiO3 and (001) MgO single crystal substrates by

the PLD technique using a KrF excimer laser (k¼ 248 nm,

fluence �2 J cm�2 pulse�1, 10 Hz). The temperatures during

the film growth were 700 �C for SrTiO3 substrates and

750 �C for MgO substrates, while the oxygen pressure was

kept at 10 Pa. In the case of SrTiO3 substrates, the LBSO

films were annealed at 1200 �C in air to obtain atomically

smooth surfaces.5,15

High-resolution X-ray diffraction (Cu Ka1, ATX-G,

Rigaku Co.) measurements revealed that the LBSO films

were heteroepitaxially grown on (001) SrTiO3 substrates and

(001) MgO substrates with a cube-on-cube epitaxial relation-

ship. The film thicknesses were determined from the Kiessig

fringes or Pendellosung fringes. The surface morphology

was investigated using an atomic force microscope (AFM,

Nanocute, Hitachi High Tech.). The stepped and terraced

surface was observed on the film grown on a (001) SrTiO3

substrate (Fig. S1(a) in the supplementary material), whereas

very tiny grains were observed in the film grown on a (001)

MgO substrate (Fig. S1(b) in the supplementary material).

The AFM images show that the films grown on SrTiO3 and

MgO have very different surface morphologies.

In order to elaborate the structural differences in more

detail, X-ray reciprocal space mappings (RSMs) were per-

formed around the asymmetric 103 diffraction spots of

BaSnO3 with the 103 diffraction spots of SrTiO3 [Fig. 1(a)]

and the 204 diffraction spot of MgO [Fig. 1(b)]. While the

qx/2p peak position of BaSnO3 and the substrate are different

from each other, they both are located nearby the red dotted

line (cubic), indicating incoherent epitaxial growth occurred

in both cases. In order to determine the lateral grain size (D),

we plotted the cross-sectional peak intensity as a function of

qx/2p. In the case of the SrTiO3 substrate, an integral width

of 0.0306 nm�1 was obtained for the 14-nm-thick film,

whereas that of 0.0127 nm�1 was obtained for the 1040-nm-

thick film [Fig. 1(c)]. In the case of the MgO substrate, an

integral width of 0.1085 nm�1 was obtained for the 44-nm-

thick film, whereas that of 0.0557 nm�1 was obtained for the

1000-nm-thick film [Fig. 1(d)].

Using the 103 diffraction spots, we calculated the aver-

age lattice parameters, (a2�c)1/3, of the LBSO films grown on

SrTiO3 and MgO substrates [Fig. 2(a)], where a and c are the

in-plane and the out-of-plane lattice parameters, respec-

tively. The (a2�c)1/3 values of the films on SrTiO3 and MgO

substrates initially showed opposite behaviors; (a2�c)1/3 of

the films on MgO was larger than the bulk, whereas that of

the films on SrTiO3 was smaller than the bulk, which are

probably attributed to the differences in the lattice mismatch.

On both substrates, the (a2�c)1/3 values were nearly similar

when the thickness was greater than 300 nm. We then calcu-

lated the lateral grain size [D¼ (integral width in the qx/2p
direction of the RSM)�1] of the LBSO films grown on

SrTiO3 and MgO substrates as shown in Fig. 2(b). The lateral

grain sizes were quite different as the LBSO films on SrTiO3

exhibited a maximum grain size of �85 nm, whereas the

grains in the LBSO films on MgO were 20 nm or less.

The microstructure of the LBSO films was characterized

by high-angle annular dark-field scanning transmission

FIG. 1. Crystallographic characteriza-

tion of the LBSO epitaxial films grown

on (001) SrTiO3 and (001) MgO sub-

strates. X-ray reciprocal space map-

ping around 103 LBSO on (a) (001)

SrTiO3 substrates (14-nm-thick and

1040-nm-thick films) and (b) (001)

MgO substrates (44-nm-thick and

1000-nm-thick films) is shown. The

red dotted lines show cubic symmetry.

Cross-sectional intensity profiles of the

103 LBSO peak on (c) (001) SrTiO3

substrates [from (a)] and (d) (001)

MgO substrates [from (b)].

FIG. 2. Thickness dependence of the crystal quality of the LBSO epitaxial

films grown on (001) SrTiO3 and (001) MgO substrates. (a) Average lattice

parameters (a2c)1/3 and (b) lateral grain size (D) of the LBSO films grown

on SrTiO3 (white) and MgO (red). Large differences in the lattice parame-

ters and the lateral grain sizes were observed.
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electron microscopy (HAADF-STEM). Figure 3 shows the

cross-sectional HAADF-STEM images of (a) the 1.04-lm-

thick LBSO/SrTiO3 and (b) the 1-lm-thick LBSO/MgO

films. In the case of LBSO/SrTiO3 [Fig. 3(a)], mismatch dis-

locations (indicated by arrows) are observed periodically at

the interface. The spacing of the mismatch dislocation was

about 7.3 nm, which is in good agreement with Da¼þ5.3%.

On the other hand, in the case of LBSO/MgO [Fig. 3(b)],

mismatch dislocations were not periodic but seemingly occa-

sional. Furthermore, we observed high density threading dis-

locations in the cross-sectional low-angle annular dark-field

(LAADF)-STEM images of the films as shown in Fig. S2 in

the supplementary material. The average distance between

two threading dislocations is �100 nm for LBSO/SrTiO3

[Fig. S2(a)] and �30 nm for LBSO/MgO [Fig. S2(b)],

reflecting the lateral grain sizes obtained from the RSMs

(�85 nm for LBSO/SrTiO3 and �20 nm for LBSO/MgO).

Thus, the densities of the threading dislocations are

1.4� 1010 cm�2 for the film on the SrTiO3 substrate and

2.5� 1011 cm�2 for the film on the MgO substrate. These

results show that there are several structural differences

between the LBSO films on SrTiO3 and MgO substrates,

which include the surface morphology, lattice parameter, lat-

eral grain size, density of threading dislocations, and density

of misfit dislocations.

The electrical resistivity (q), carrier concentration (n),

Hall mobility (lHall), and thermopower (S) of the LBSO

films at room temperature (RT) and low temperatures were

measured by the conventional DC four-probe method using

an In-Ga alloy electrode with van der Pauw geometry. S-val-

ues were measured by creating a temperature difference (DT)

of �4 K across the film using two Peltier devices. Two small

thermocouples were used to monitor the actual temperatures

of each end of the film. The thermo-electromotive force

(DV) and DT were measured simultaneously, and the S-val-

ues were obtained from the slope of the DV–DT plots (corre-

lation coefficient >0.9999).

Figure 4 and Tables SI and SII in the supplementary

material summarize the electron transport properties of the

LBSO films grown on SrTiO3 and MgO substrates at RT.

Regarding the overall tendencies, no clear difference was

observed from LBSO films deposited on SrTiO3 and MgO

substrates. The value of n increased with the increasing thick-

ness and approached the nominal carrier concentration (¼[2%

La3þ]). Approximately, 88% La3þ dopants were activated

and produced conducting electrons for films thicker than

350 nm [Fig. 4(a)]. Similarly, the magnitude of S [Fig. 4(b)],

which decreases with increasing n, gradually decreased with

the thickness, which is consistent with Fig. 4(a). All values of

S were negative, indicating that the LBSO films are n-type

semiconductors.24 In addition, lHall increased gradually with

the thickness and became constant for films thicker than

350 nm. The highest mobility values were 97.7 cm2 V�1 s�1

for 1040 nm thick LBSO/SrTiO3 and 99.2 cm2 V�1 s�1 for

450 nm thick LBSO/MgO. The thickness dependence of lHall

and n in the LBSO films were similar on both SrTiO3 and

MgO substrates. In addition, since lHall and n of LBSO films

thicker than 350 nm do not show a significant dependence on

the substrates, the contributions from the structural differ-

ences between LBSO/SrTiO3 and LBSO/MgO on the mobil-

ity are likely small.

The electron mobility in LBSO films rapidly increased

with the thickness. However, the maximum mobility

(�100 cm2 V�1 s�1) was still low compared to the bulk val-

ues (�320 cm2 V�1 s�1). In order to further investigate the

suppression of electronic transport properties, we performed

x-ray absorption spectroscopy (XAS) around the Sn M4,5

edge of a 500-nm-thick LBSO film on the SrTiO3 substrate

in the Pohang accelerator laboratory (2A) (Fig. S3 in the sup-

plementary material). Several peaks (A–F) were clearly

observed in the XAS spectra. The peaks labeled as B–F are

well matched with BaSnO3. However, there is an additional

peak from the 2þ valence state of Sn (SnO, peak A). The rel-

ative peak intensity A in the surface region was smaller than

that of the deep region. Since we did not detect the SnO

phase in the film by the XRD measurements and the STEM

FIG. 3. Cross-sectional HAADF-STEM images for the LBSO epitaxial

films. (a) 1040-nm-thick LBSO film grown on a SrTiO3 substrate. (b) 1000-

nm-thick LBSO film grown on a MgO substrate. While mismatch disloca-

tions (arrow) are seen periodically (�7.3 nm) in (a), such periodicity is not

clearly seen in (b), indicating the difference of the mismatch dislocation

density.
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observations, the Sn2þ ions substitute either the B-site or the

A-site of the perovskite BaSnO3. If Sn2þ ions substitute the

B-site in the LBSO films, the Sn2þ should play as electron

acceptors and ionized impurities, and they may be related to

the suppression of lHall and n in the films (compared to bulk

values). From these observations, we speculate that the

thickness dependence of the electron transport properties

originates from the thickness dependence of the Sn2þ ion

concentration. In order to clarify the formation mechanism

of Sn2þ ions, a further study is needed.

Finally, we measured the temperature dependence of the

electron transport properties of the LBSO films grown on

(001) SrTiO3 substrates (Fig. S3 in the supplementary mate-

rial). Metallic behavior was observed in all the films [Fig.

S4(a)], indicating that the Fermi energy is located above the

conduction band edge and the films behave as degenerate

semiconductors.14 The values of n for all films were almost

temperature independent and similar for films thicker than

350 nm [Fig. S4(b)]. lHall increased with decreasing temper-

ature, and the change was more significant for thicker films.

The highest lHall of 163 cm2 V�1 s�1 was observed in the

1040 nm thick LBSO film at 8 K [Fig. S4(c)]. jSj almost line-

arly decreased with decreasing temperature [Fig. S4(d)],

which is typical for degenerate semiconductors.24

In summary, we have demonstrated that the electron

transport properties of the LBSO films grown on (001)

SrTiO3 and (001) MgO substrates show a strong thickness

dependence in the range of 14 nm–1040 nm. Although

LBSO/SrTiO3 and LBSO/MgO exhibited several structural

differences including lattice parameters, lateral grain size,

the density of threading dislocations, the surface morphol-

ogy, and the density of misfit dislocations, these structural

discrepancies did not play a major role in the carrier mobility

as no clear structure-induced difference was observed in the

electron transport properties. lHall and n increased with the

increasing LBSO film thickness. On both SrTiO3 and MgO

substrates, the maximum lHall observed was �100 cm2 V�1

s�1. While the origin of the strong thickness dependence of

lHall remains unclear, we detected the 2þ valence state of Sn

in the XAS spectrum of a 500 nm thick LBSO film. Since

Sn2þ ions should play not only as electron acceptors but also

as ionized impurities, they may increase the scattering cross

section of the electrons and contribute to the mobility sup-

pression.21–23 We hope to clarify the effect of the Sn valence

state on the electron mobility of LBSO films in near future.

We believe that our results can provide a guideline for

the thickness optimization of high-mobility LBSO films

grown on other substrates. This study also provides further

insights into the development of LBSO-based electronic

devices.

See supplementary material for the topographic AFM,

cross-sectional LAADF-STEM, XAS, and temperature

dependence of the electron transport properties of the LBSO

films.
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