384 research outputs found

    Evaluation of an immunochromatographic assay for the detection of anti-hepatitis A virus IgM

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatitis A virus (HAV) is a causative agent of acute hepatitis, which is transmitted by person-to-person contact and via the faecal-oral route. Acute HAV infection is usually confirmed by anti-HAV IgM detection. In order to detect anti-HAV IgM in the serum of patients infected with HAV, we developed a rapid assay based on immunochromatography (ICA) and evaluated the sensitivity of this assay by comparing it with a commercial microparticle enzyme immunoassay (MEIA) that is widely used for serological diagnosis.</p> <p>Results</p> <p>The newly developed ICA showed 100% sensitivity and specificity when used to test 150 anti-HAV IgM-positive sera collected from infected patients and 75 negative sera from healthy subjects. Also, the sensitivity of ICA is about 10 times higher than MEIA used in this study by determining end point to detect independent on infected genotype of HAV. In addition, the ICA was able to detect 1 positive sample from among 50 sera from acute hepatitis patients that had tested negative for anti-HAV IgM using the MEIA.</p> <p>Conclusion</p> <p>Conclusively, ICA for the detection of anti-HAV IgM will be very effective for rapid assay to apply clinical diagnosis and epidemiological investigation on epidemics due to the simplicity, rapidity and specificity.</p

    Transcriptional regulatory networks underlying the reprogramming of spermatogonial stem cells to multipotent stem cells

    Get PDF
    Spermatogonial stem cells (SSCs) are germline stem cells located along the basement membrane of seminiferous tubules in testes. Recently, SSCs were shown to be reprogrammed into multipotent SSCs (mSSCs). However, both the key factors and biological networks underlying this reprogramming remain elusive. Here, we present transcriptional regulatory networks (TRNs) that control cellular processes related to the SSC-to-mSSC reprogramming. Previously, we established intermediate SSCs (iSSCs) undergoing the transition to mSSCs and generated gene expression profiles of SSCs, iSSCs and mSSCs. By comparing these profiles, we identified 2643 genes that were up-regulated during the reprogramming process and 15 key transcription factors (TFs) that regulate these genes. Using the TF-target relationships, we developed TRNs describing how these TFs regulate three pluripotency-related processes (cell proliferation, stem cell maintenance and epigenetic regulation) during the reprogramming. The TRNs showed that 4 of the 15 TFs (Oct4/Pou5f1, Cux1, Zfp143 and E2f4) regulated cell proliferation during the early stages of reprogramming, whereas 11 TFs (Oct4/Pou5f1, Foxm1, Cux1, Zfp143, Trp53, E2f4, Esrrb, Nfyb, Nanog, Sox2 and Klf4) regulated the three pluripotency-related processes during the late stages of reprogramming. Our TRNs provide a model for the temporally coordinated transcriptional regulation of pluripotency-related processes during the SSC-to-mSSC reprogramming, which can be further tested in detailed functional studies.111Ysciescopuskc

    Observation of transverse spin Nernst magnetoresistance induced by thermal spin current in ferromagnet/non-magnet bilayers

    Full text link
    Electric generation of spin current via spin Hall effect is of great interest as it allows an efficient manipulation of magnetization in spintronic devices. Theoretically, spin current can be also created by a temperature gradient, which is known as spin Nernst effect. Here, we report spin Nernst effect-induced transverse magnetoresistance in ferromagnet (FM)/non-magnetic heavy metal (HM) bilayers. We observe that the magnitude of transverse magnetoresistance (i.e., planar Nernst signal) in FM/HM bilayers is significantly modified by HM and its thickness. This strong dependence of transverse magnetoresistance on HM evidences the spin Nernst effect in HM; the generation of thermally-induced spin current in HM and its subsequent reflection at the FM/HM interface. Our analysis of transverse magnetoresistance shows that the spin Nernst angles of W and Pt have the opposite sign to their spin Hall angles. Moreover, our estimate implies that the magnitude of the spin Nernst angle would be comparable to that of the spin Hall angle, suggesting an efficient generation of spin current by the spin Nernst effect

    Ultrafast giant magnetic cooling effect in ferromagnetic Co/Pt multilayers

    Get PDF
    The magnetic cooling effect originates from a large change in entropy by the forced magnetization alignment, which has long been considered to be utilized as an alternative environment-friendly cooling technology compared to conventional refrigeration. However, an ultimate timescale of the magnetic cooling effect has never been studied yet. Here, we report that a giant magnetic cooling (up to 200 K) phenomenon exists in the Co/Pt nanomultilayers on a femtosecond timescale during the photoinduced demagnetization and remagnetization, where the disordered spins are more rapidly aligned, and thus magnetically cooled, by the external magnetic field via the lattice-spin interaction in the multilayer system. These findings were obtained by the extensive analysis of time-resolved magneto-optical responses with systematic variation of laser fluence as well as external field strength and direction. Ultrafast giant magnetic cooling observed in the present study can enable a new avenue to the realization of ultrafast magnetic devices.111Ysciescopu

    Effects of Dietary Garlic Powder on Growth, Feed Utilization and Whole Body Composition Changes in Fingerling Sterlet Sturgeon,

    Get PDF
    A 12 week growth study was carried out to investigate the supplemental effects of dietary garlic powder (GP) on growth, feed utilization and whole body composition changes of fingerling sterlet sturgeon Acipenser ruthenus (averaging weight, 5.5 g). Following a 24-h fasting, 540 fish were randomly distributed to each of 18 tanks (30 fish/tank) under a semi-recirculation freshwater system. The GP of 0.5% (GP0.5), 1% (GP1), 1.5% (GP1.5), 2% (GP2) and 3% (GP3) was added to the control diet (GP0) containing 43% protein and 16% lipid. After the feeding trial, weight gain (WG) of fish fed GP1.5, GP2 and GP3 were significantly higher (p<0.05) than those of fish fed GP0, GP0.5 and GP1. Feed efficiency and specific growth rate (SGR) showed a similar trend to WG. Protein efficiency ratio of fish fed GP1.5, GP2, and GP3 were significantly higher (p<0.05) than those of fish groups fed the other diets. A significant difference (p<0.05) was found in whole body composition (moisture, crude protein, crude lipid, ash, and fiber) of fish at the end of the experiment. Significantly higher (p<0.05) protein and lipid retention efficiencies (PRE and LRE) were also found in GP1.5, GP2, and GP3 groups. Broken-line regression model analysis and second order polynomial regression model analysis relation on the basis of SGR and WG indicated that the dietary optimal GP level could be greater than 1.77% and 1.79%, but less than 2.95% and 3.18% in fingerling sterlet sturgeon. The present study suggested that dietary GP for fingerling sterlet sturgeon could positively affect growth performance and protein retention
    corecore