48 research outputs found

    A learning health systems approach to integrating electronic patient-reported outcomes across the health care organization

    Get PDF
    Introduction: Foundational to a learning health system (LHS) is the presence of a data infrastructure that can support continuous learning and improve patient outcomes. To advance their capacity to drive patient-centered care, health systems are increasingly looking to expand the electronic capture of patient data, such as electronic patient-reported outcome (ePRO) measures. Yet ePROs bring unique considerations around workflow, measurement, and technology that health systems may not be poised to navigate. We report on our effort to develop generalizable learnings that can support the integration of ePROs into clinical practice within an LHS framework. Methods: Guided by action research methodology, we engaged in iterative cycles of planning, acting, observing, and reflecting around ePRO use with two primary goals: (1) mobilize an ePRO community of practice to facilitate knowledge sharing, and (2) establish guidelines for ePRO use in the context of LHS practice. Multiple, emergent data collection activities generated generalizable guidelines that document the tangible best practices for ePRO use in clinical care. We organized guidelines around thematic areas that reflect LHS structures and stakeholders. Results: Three core thematic areas (and 24 guidelines) emerged. The theme of governance reflects the importance of leadership, knowledge management, and facilitating organizational learning around best practice models for ePRO use. The theme of integration considers the intersection of workflow, technology, and human factors for ePROs across areas of care delivery. Lastly, the theme of reporting reflects critical considerations for curating data and information, designing system functions and interactions, and presentation of ePRO data to support the translation of knowledge to action. Conclusions: The guidelines produced from this work highlight the complex, multidisciplinary nature of implementing change within LHS contexts, and the value of action research approaches to enable rapid, iterative learning that leverages the knowledge and experience of communities of practice

    Inhibition of N-Methyl-D-aspartate-induced Retinal Neuronal Death by Polyarginine Peptides Is Linked to the Attenuation of Stress-induced Hyperpolarization of the Inner Mitochondrial Membrane Potential

    Get PDF
    It is widely accepted that overactivation of NMDA receptors, resulting in calcium overload and consequent mitochondrial dysfunction in retinal ganglion neurons, plays a significant role in promoting neurodegenerative disorders such as glaucoma. Calcium has been shown to initiate a transient hyperpolarization of the mitochondrial membrane potential triggering a burst of reactive oxygen species leading to apoptosis. Strategies that enhance cell survival signaling pathways aimed at preventing this adverse hyperpolarization of the mitochondrial membrane potential may provide a novel therapeutic intervention in retinal disease. In the retina, brain-derived neurotrophic factor has been shown to be neuroprotective, and our group previously reported a PSD-95/PDZ-binding cyclic peptide (CN2097) that augments brain-derived neurotrophic factor-induced pro-survival signaling. Here, we examined the neuroprotective properties of CN2097 using an established retinal in vivo NMDA toxicity model. CN2097 completely attenuated NMDA-induced caspase 3-dependent and -independent cell death and PARP-1 activation pathways, blocked necrosis, and fully prevented the loss of long term ganglion cell viability. Although neuroprotection was partially dependent upon CN2097 binding to the PDZ domain of PSD-95, our results show that the polyarginine-rich transport moiety C-R(7), linked to the PDZ-PSD-95-binding cyclic peptide, was sufficient to mediate short and long term protection via a mitochondrial targeting mechanism. C-R(7) localized to mitochondria and was found to reduce mitochondrial respiration, mitochondrial membrane hyperpolarization, and the generation of reactive oxygen species, promoting survival of retinal neurons

    Regulation of Respiration and Apoptosis by Cytochrome c Threonine 58 Phosphorylation

    Get PDF
    Cytochrome c (cytc) is a multifunctional protein, acting as an electron carrier in the electron transport chain (ETC), where it shuttles electrons from bc1 complex to cytochrome c oxidase (COX), and as a trigger of type II apoptosis when released from the mitochondria. We previously showed that cytc is regulated in a highly tissue-specific manner: Cytc isolated from heart, liver, and kidney is phosphorylated on Y97, Y48, and T28, respectively. Here, we have analyzed the effect of a new Cytc phosphorylation site, threonine 58, which we mapped in rat kidney Cytc by mass spectrometry. We generated and overexpressed wild-type, phosphomimetic T58E, and two controls, T58A and T58I cytc; the latter replacement is found in human and testis-specific Cytc. In vitro, COX activity, caspase-3 activity, and heme degradation in the presence of H2o2 were decreased with phosphomimetic Cytc compared to wild-type. Cytc-knockout cells expressing T58E or T58I Cytc showed a reduction in intact cell respiration, mitochondrial membrane potential (∆Ψm), ROS production, and apoptotic activity compared to wild-type. We propose that, under physiological conditions, Cytc is phosphorylated, which controls mitochondrial respiration and apoptosis. Under conditions of stress Cytc phosphorylations are lost leading to maximal respiration rates, ∆Ψm hyperpolarization, ROS production, and apoptosis

    Phosphorylation of Cytochrome c Threonine 28 Regulates Electron Transport Chain Activity in Kidney: Implications for AMP Kinase

    Get PDF
    Mammalian cytochrome c (Cytc) plays a key role in cellular life and death decisions, functioning as an electron carrier in the electron transport chain and as a trigger of apoptosis when released from the mitochondria. However, its regulation is not well understood. We show that the major fraction of Cytc iso- lated from kidneys is phosphorylated on Thr28, leading to a par- tial inhibition of respiration in the reaction with cytochrome c oxidase. To further study the effect of Cytc phosphorylation in vitro, we generated T28E phosphomimetic Cytc, revealing supe- rior behavior regarding protein stability and its ability to degrade reactive oxygen species compared with wild-type un- phosphorylated Cytc. Introduction of T28E phosphomimetic Cytc into Cytc knock-out cells shows that intact cell respiration, mitochondrial membrane potential (����m), and ROS levels are reduced compared with wild type. As we show by high resolu- tion crystallography of wild-type and T28E Cytc in combination with molecular dynamics simulations, Thr28 is located at a cen- tral position near the heme crevice, the most flexible epitope of the protein apart from the N and C termini. Finally, in silico prediction and our experimental data suggest that AMP kinase, which phosphorylates Cytc on Thr28 in vitro and colocalizes with Cytc to the mitochondrial intermembrane space in the kid- ney, is the most likely candidate to phosphorylate Thr28 in vivo. We conclude that Cytc phosphorylation is mediated in a tissue- specific manner and leads to regulation of electron transport chain flux via “controlled respiration,” preventing ����m hyperpolarization, a known cause of ROS and trigger of apoptosis

    MrkH, a Novel c-di-GMP-Dependent Transcriptional Activator, Controls Klebsiella pneumoniae Biofilm Formation by Regulating Type 3 Fimbriae Expression

    Get PDF
    Klebsiella pneumoniae causes significant morbidity and mortality worldwide, particularly amongst hospitalized individuals. The principle mechanism for pathogenesis in hospital environments involves the formation of biofilms, primarily on implanted medical devices. In this study, we constructed a transposon mutant library in a clinical isolate, K. pneumoniae AJ218, to identify the genes and pathways implicated in biofilm formation. Three mutants severely defective in biofilm formation contained insertions within the mrkABCDF genes encoding the main structural subunit and assembly machinery for type 3 fimbriae. Two other mutants carried insertions within the yfiN and mrkJ genes, which encode GGDEF domain- and EAL domain-containing c-di-GMP turnover enzymes, respectively. The remaining two isolates contained insertions that inactivated the mrkH and mrkI genes, which encode for novel proteins with a c-di-GMP-binding PilZ domain and a LuxR-type transcriptional regulator, respectively. Biochemical and functional assays indicated that the effects of these factors on biofilm formation accompany concomitant changes in type 3 fimbriae expression. We mapped the transcriptional start site of mrkA, demonstrated that MrkH directly activates transcription of the mrkA promoter and showed that MrkH binds strongly to the mrkA regulatory region only in the presence of c-di-GMP. Furthermore, a point mutation in the putative c-di-GMP-binding domain of MrkH completely abolished its function as a transcriptional activator. In vivo analysis of the yfiN and mrkJ genes strongly indicated their c-di-GMP-specific function as diguanylate cyclase and phosphodiesterase, respectively. In addition, in vitro assays showed that purified MrkJ protein has strong c-di-GMP phosphodiesterase activity. These results demonstrate for the first time that c-di-GMP can function as an effector to stimulate the activity of a transcriptional activator, and explain how type 3 fimbriae expression is coordinated with other gene expression programs in K. pneumoniae to promote biofilm formation to implanted medical devices

    Infection Prevention and Control

    Get PDF
    AbstractHealthcare-associated infections (HAI) are adverse events exposing patients to a potentially avoidable risk of morbidity and mortality. Antimicrobial resistance (AMR) is increasingly contributing to the burden of HAIs and emerging as of the most alarming challenges for public health worldwide. Practically, harm mitigation and risk containment demand cross-sectional initiatives incorporate both approaches to infection prevention and control and methodologies from clinical risk management

    How sulphate-reducing microorganisms cope with stress: lessons from systems biology

    Get PDF
    Sulphate-reducing microorganisms (SRMs) are a phylogenetically diverse group of anaerobes encompassing distinct physiologies with a broad ecological distribution. As SRMs have important roles in the biogeochemical cycling of carbon, nitrogen, sulphur and various metals, an understanding of how these organisms respond to environmental stresses is of fundamental and practical importance. In this Review, we highlight recent applications of systems biology tools in studying the stress responses of SRMs, particularly Desulfovibrio spp., at the cell, population, community and ecosystem levels. The syntrophic lifestyle of SRMs is also discussed, with a focus on system-level analyses of adaptive mechanisms. Such information is important for understanding the microbiology of the global sulphur cycle and for developing biotechnological applications of SRMs for environmental remediation, energy production, biocorrosion control, wastewater treatment and mineral recovery

    Transcriptional and biochemical analysis of starch metabolism in the hyperthermophilic archaeon Pyrococcus furiosus

    No full text
    Pyrococcus furiosus utilizes starch and its degradation products, such as maltose, as primary carbon sources, but the pathways by which these α-glucans are processed have yet to be defined. For example, its genome contains genes proposed to encode five amylolytic enzymes (including a cyclodextrin glucanotransferase [CGTase] and amylopullulanase), as well as two transporters for maltose and maltodextrins (Mal-I and Mal-II), and a range of intracellular enzymes have been purified that reportedly metabolize maltodextrins and maltose. However, precisely which of these enzymes are involved in starch processing is not clear. In this study, starch metabolism in P. furiosus was examined by biochemical analyses in conjunction with global transcriptional response data for cells grown on a variety of glucans. In addition, DNA sequencing led to the correction of two key errors in the genome sequence, and these change the predicted properties of amylopullulanase (now designated PF1935*) and CGTase (PF0478*). Based on all of these data, a pathway is proposed that is specific for starch utilization that involves one transporter (Mal-11 [PF1933 to PF1939]) and only three enzymes, amylopullulanase (PF193S*), 4-a-glucanotransferase (PF0272), and maltodextrin phosphorylase (PF1535). Their expression is upregulated on starch, and together they generate glucose and glucose-1-phosphate, which then feed into the novel glycolytic pathway of this organism. In addition, the results indicate that several hypothetical proteins encoded by three gene clusters are also involved in the transport and processing of α-glucan substrates by P. furiosus. Copyright © 2006, American Society for Microbiology. All Rights Reserved
    corecore