185 research outputs found

    Quasi-Eigenstate Evolution in Open Chaotic Billiards

    Full text link
    We experimentally studied evolution of quasi-eigenmodes as classical dynamics undergoing a transition from being regular to chaotic in open quantum billiards. In a deformation-variable microcavity we traced all high-Q cavity modes in a wide range of frequency as the cavity deformation increased. By employing an internal parameter we were able to obtain a mode-dynamics diagram at a given deformation, showing avoided crossings between different mode groups, and could directly observe the coupling strengths induced by ray chaos among encountering modes. We also show that the observed mode-dynamics diagrams reflect the underlying classical ray dynamics in the phase space.Comment: 4 pages, 4 figure

    A definitive number of atoms on demand: controlling the number of atoms in a-few-atom magneto-optical trap

    Full text link
    A few 85Rb atoms were trapped in a micron-size magneto-optical trap with a high quadrupole magnetic-field gradient and the number of atoms was precisely controlled by suppressing stochastic loading and loss events via real-time feedback on the magnetic field gradient. The measured occupation probability of single atom was as high as 99%. Atoms up to five were also trapped with high occupation probabilities. The present technique could be used to make a deterministic atom source.Comment: 3 pages, 4 figure

    Development of deformation-tunable quadrupolar microcavity

    Full text link
    We have developed a technique for realizing a two-dimensional quadrupolar microcavity with its deformation variable from 0% to 20% continuously. We employed a microjet ejected from a noncircular orifice in order to generate a stationary column with modulated quadrupolar deformation in its cross section. Wavelength red shifts of low-order cavity modes due to shape deformation were measured and were found to be in good agreement with the wave calculation for the same deformation, indicating the observed deformation is quadrupolar in nature.Comment: 7 pages, 6 figures, intended for Rev. Sci. Instu

    A method of measuring the amplitude-modulated vacuum field near a conducting mirror

    Get PDF
    Electromagnetic fields of the vacuum mode near a conducting mirror are modified with respect to those in free space, with their amplitudes having a sinusoidal spatial dependence from the mirror. Therefore if we combine this spatially amplitude-modulated vacuum field mode and intense coherent light with a beam splitter, we may detect this fluctuation of the vacuum mode in a homodyne detection scheme. It will give a new method to produce squeezed states of light with a single mirror placed close to an unused port of a beam splitter. We show that the amplitude fluctuation of the combined light can be reduced by a factor of 2 below that of the coherent light. We also discuss the limitations due to the finite line width of the laser and the effective absorption length of the photodiodes

    Chaos-assisted nonresonant optical pumping of quadrupole-deformed microlasers

    Full text link
    Efficient nonresonant optical pumping of a high-Q scar mode in a two-dimensional quadrupole-deformed microlaser has been demonstrated based on ray and wave chaos. Three-fold enhancement in the lasing power was achieved at a properly chosen pumping angle. The experimental result is consistent with ray tracing and wave overlap integral calculations.Comment: 3 pages, 5 figure
    corecore