13 research outputs found

    The Genetic Effect of Copy Number Variations on the Risk of Type 2 Diabetes in a Korean Population

    Get PDF
    BACKGROUND: Unlike Caucasian populations, genetic factors contributing to the risk of type 2 diabetes mellitus (T2DM) are not well studied in Asian populations. In light of this, and the fact that copy number variation (CNV) is emerging as a new way to understand human genomic variation, the objective of this study was to identify type 2 diabetes-associated CNV in a Korean cohort. METHODOLOGY/PRINCIPAL FINDINGS: Using the Illumina HumanHap300 BeadChip (317,503 markers), genome-wide genotyping was performed to obtain signal and allelic intensities from 275 patients with type 2 diabetes mellitus (T2DM) and 496 nondiabetic subjects (Total n = 771). To increase the sensitivity of CNV identification, we incorporated multiple factors using PennCNV, a program that is based on the hidden Markov model (HMM). To assess the genetic effect of CNV on T2DM, a multivariate logistic regression model controlling for age and gender was used. We identified a total of 7,478 CNVs (average of 9.7 CNVs per individual) and 2,554 CNV regions (CNVRs; 164 common CNVRs for frequency>1%) in this study. Although we failed to demonstrate robust associations between CNVs and the risk of T2DM, our results revealed a putative association between several CNVRs including chr15:45994758-45999227 (P = 8.6E-04, P(corr) = 0.01) and the risk of T2DM. The identified CNVs in this study were validated using overlapping analysis with the Database of Genomic Variants (DGV; 71.7% overlap), and quantitative PCR (qPCR). The identified variations, which encompassed functional genes, were significantly enriched in the cellular part, in the membrane-bound organelle, in the development process, in cell communication, in signal transduction, and in biological regulation. CONCLUSION/SIGNIFICANCE: We expect that the methods and findings in this study will contribute in particular to genome studies of Asian populations

    Selective activation of the c-Jun N-terminal protein kinase pathway during 4-hydroxynonenal-induced apoptosis of PC12 cells

    No full text
    ABSTRACT The by-product of lipid peroxidation, 4-hydroxynonenal (HNE), was shown to cause apoptosis in PC12 cells. In this study, we investigated the molecular mechanism of HNE-induced apoptosis in these cells. Specifically, we determined the effect of HNE on the activities of mitogen-activated protein (MAP) kinases involved in early signal transduction. Within 15 to 30 min after HNE treatment, c-Jun N-terminal protein kinase (JNK) was maximally activated, before it returned to control level at 1 h post-treatment. In contrast, activities of extracellular signalregulated kinase and p38 MAP kinase remained unchanged from their baseline levels. Stress-activated protein kinase kinase (SEK1), an upstream kinase of JNK, was also activated within 5 min after HNE treatment and remained activated for up to 60 min. Marked activation of the JNK pathway through SEK1 and apoptosis signal-regulating kinase 1 (ASK1), an upstream kinase of SEK1, was demonstrated by the transient transfection of cDNA for wild-type SEK1 or ASK1 together with JNK into COS-7 cells. Furthermore, significant reductions in JNK activation and HNE-induced cell death were observed when either of the dominant negative mutant of SEK1 or ASK1 was cotransfected with JNK. Pretreatment of PC12 cells with a survivalpromoting agent, 8-(4-chlorophenylthio)-cAMP, prevented both the HNE-induced JNK activation and apoptosis. Nonaldehyde, a nontoxic aldehyde, neither caused apoptosis nor JNK activation. Pretreatment of PC12 cells with SB203580, a specific inhibitor of p38 MAP kinase, had no effect on HNE-induced apoptosis. All these data suggest that the selective JNK activation by HNE is critical for the apoptosis of PC12 cells and that the HNE-mediated apoptosis is likely to be mediated through the activation of the ASK1-SEK1-JNK pathway without activation of extracellular signal-regulated kinase or p38 MAP kinase. Reactive moieties produced during stressful conditions cause the oxidation of polyunsaturated fatty acids in membrane lipid bilayers. Without sufficient levels of defense mechanisms such as free radical scavengers or antioxidants, increasing levels of lipid hydroperoxides and peroxides can be produced by self-perpetuating chain reactions. Eventually, cytotoxic lipid aldehydes, including 4-hydroxynonenal (HNE), an end product of lipid peroxidation, is produced Extracellular signal-regulated kinase (ERK) plays a major role in cell proliferation and differentiation as well as sur-1 Both authors contributed equally to the present work

    Mechanism of 3,4-Methylenedioxymethamphetamine (MDMA, Ecstasy)-Mediated Mitochondrial Dysfunction in Rat Liver

    No full text
    Despite numerous reports citing the acute hepatotoxicity caused by 3,4-methylenedioxymethamphetamine (MDMA) (ecstasy), the underlying mechanism of organ damage is poorly understood. We hypothesized that key mitochondrial proteins are oxidatively modified and inactivated in MDMA-exposed tissues. The aim of this study was to identify and investigate the mechanism of inactivation of oxidatively modified mitochondrial proteins, prior to the extensive mitochondrial dysfunction and liver damage following MDMA exposure. MDMA-treated rats showed abnormal liver histology with significant elevation in plasma transaminases, nitric oxide synthase, and the level of hydrogen peroxide. Oxidatively modified mitochondrial proteins in control and MDMA-exposed rats were labeled with biotin-N-maleimide (biotin-NM) as a sensitive probe for oxidized proteins, purified with streptavidin-agarose, and resolved using 2-DE. Comparative 2-DE analysis of biotin-NM-labeled proteins revealed markedly increased levels of oxidatively modified proteins following MDMA exposure. Mass spectrometric analysis identified oxidatively modified mitochondrial proteins involved in energy supply, fat metabolism, antioxidant defense, and chaperone activities. Among these, the activities of mitochondrial aldehyde dehydrogenase, 3-ketoacyl-CoA thiolases, and ATP synthase were significantly inhibited following MDMA exposure. Our data show for the first time that MDMA causes the oxidative inactivation of key mitochondrial enzymes which most likely contributes to mitochondrial dysfunction and subsequent liver damage in MDMA-exposed animals

    Increased Oxidative-Modifications of Cytosolic Proteins in 3,4-Methylenedioxymethamphetamine (MDMA, Ecstasy)-Exposed Rat Liver

    No full text
    It is well established that 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) causes acute liver damage in animals and humans. The aim of this study was to identify and characterize oxidative modification and inactivation of cytosolic proteins in MDMA-exposed rats. Markedly increased levels of oxidized and nitrated cytosolic proteins were detected 12 h after the second administration of two consecutive MDMA doses (10 mg/kg each). Comparative 2-DE analysis showed markedly increased levels of biotin-N-methylimide-labeled oxidized cytosolic proteins in MDMA-exposed rats compared to vehicle-treated rats. Proteins in the 22 gel spots of strong intensities were identified using MS/MS. The oxidatively modified proteins identified include anti-oxidant defensive enzymes, a calcium-binding protein, and proteins involved in metabolism of lipids, nitrogen, and carbohydrates (glycolysis). Cytosolic superoxide dismutase was oxidized and its activity significantly inhibited following MDMA exposure. Consistent with the oxidative inactivation of peroxiredoxin, MDMA activated c-Jun N-terminal protein kinase and p38 kinase. Since these protein kinases phosphorylate anti-apoptotic Bcl-2 protein, their activation may promote apoptosis in MDMA-exposed tissues. Our results show for the first time that MDMA induces oxidative-modification of many cytosolic proteins accompanied with increased oxidative stress and apoptosis, contributing to hepatic damage
    corecore