1,188 research outputs found

    Functionalized Graphene Sheet / Polyurethane Nanocomposites

    Get PDF

    Real-time measurement of the three-axis contact force distribution using a flexible capacitive polymer tactile sensor

    Full text link
    In this paper, we report real-time measurement results of various contact forces exerted on a new flexible capacitive three-axis tactile sensor array based on polydimethylsiloxane (PDMS). A unit sensor consists of two thick PDMS layers with embedded copper electrodes, a spacer layer, an insulation layer and a bump layer. There are four capacitors in a unit sensor to decompose a contact force into its normal and shear components. They are separated by a wall-type spacer to improve the mechanical response time. Four capacitors are arranged in a square form. The whole sensor is an 8 _ 8 array of unit sensors and each unit sensor responds to forces in all three axes. Measurement results show that the full-scale range of detectable force is around 0–20 mN (250 kPa) for all three axes. The estimated sensitivities of a unit sensor with the current setup are 1.3, 1.2 and 1.2%/mN for the x- , y- and z -axes, respectively. A simple mechanical model has been established to calculate each axial force component from the measured capacitance value. Normal and shear force distribution images are captured from the fabricated sensor using a real-time measurement system. The mechanical response time of a unit sensor has been estimated to be less than 160 ms. The flexibility of the sensor has also been demonstrated by operating the sensor on a curved surface of 4 mm radius of curvature.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90798/1/0960-1317_21_3_035010.pd

    Automatic 3D Model Generation based on a Matching of Adaptive Control Points

    Get PDF
    Abstract The use of a 3D model helps to diagnosis and accurately locate a disease where it is neither available, nor can be exactly measured in a 2D image. Therefore, highly accurate software for a 3D model of vessel is required for an accurate diagnosis of patients. We have generated standard vessel because the shape of the arterial is different for each individual vessel, where the standard vessel can be adjusted to suit individual vessel. In this paper, we propose a new approach for an automatic 3D model generation based on a matching of adaptive control points. The proposed method is carried out in three steps. First, standard and individual vessels are acquired. The standard vessel is acquired by a 3D model projection, while the individual vessel of the first segmented vessel bifurcation is obtained. Second is matching the corresponding control points between the standard and individual vessels, where a set of control and corner points are automatically extracted using the Harris corner detector. If control points exist between corner points in an individual vessel, it is adaptively interpolated in the corresponding standard vessel which is proportional to the distance ratio. And then, the control points of corresponding individual vessel match with those control points of standard vessel. Finally, we apply warping on the standard vessel to suit the individual vessel using the TPS (Thin Plate Spline) interpolation function. For experiments, we used angiograms of various patients from a coronary angiography in Sanggye Paik Hospital

    Localization Uncertainty Estimation for Anchor-Free Object Detection

    Full text link
    Since many safety-critical systems, such as surgical robots and autonomous driving cars, are in unstable environments with sensor noise and incomplete data, it is desirable for object detectors to take into account the confidence of localization prediction. There are three limitations of the prior uncertainty estimation methods for anchor-based object detection. 1) They model the uncertainty based on object properties having different characteristics, such as location (center point) and scale (width, height). 2) they model a box offset and ground-truth as Gaussian distribution and Dirac delta distribution, which leads to the model misspecification problem. Because the Dirac delta distribution is not exactly represented as Gaussian, i.e., for any ÎŒ\mu and ÎŁ\Sigma. 3) Since anchor-based methods are sensitive to hyper-parameters of anchor, the localization uncertainty modeling is also sensitive to these parameters. Therefore, we propose a new localization uncertainty estimation method called Gaussian-FCOS for anchor-free object detection. Our method captures the uncertainty based on four directions of box offsets~(left, right, top, bottom) that have similar properties, which enables to capture which direction is uncertain and provide a quantitative value in range~[0, 1]. To this end, we design a new uncertainty loss, negative power log-likelihood loss, to measure uncertainty by weighting IoU to the likelihood loss, which alleviates the model misspecification problem. Experiments on COCO datasets demonstrate that our Gaussian-FCOS reduces false positives and finds more missing-objects by mitigating over-confidence scores with the estimated uncertainty. We hope Gaussian-FCOS serves as a crucial component for the reliability-required task

    Hydrogen-bonded multilayer of pH-responsive polymeric micelles with tannic acid for surface drug delivery

    Get PDF
    We report the design of a platform for the delivery of hydrophobic drugs conjugated to block copolymer micelles via pH-responsive linkage that are assembled within hydrogen-bonded polymer multilayer thin films.close465

    Patterns of Using Complementary and Alternative Medicine by Stroke Patients at Two University Hospitals in Korea

    Get PDF
    This study measured the prevalence of complementary and alternative medicine (CAM) use among Korean stroke patients. Questionnaire-based 20-min interviews were conducted at the hospitals by a trained nurse after an outpatient visit. It included questions on demographic information, clinical information and the utilization of CAM. Of 304 stroke-patient respondents, 164 (54%) had used CAM, of which 66% had started taking CAM products following suggestions from family members and other relatives. Of the 57% of users who felt that CAM was effective, 84% considered that it improved the symptoms of stroke and 16% felt it was effective in achieving psychological relaxation. Of the eight CAM categories used by respondents, 92% used traditional Oriental medical treatments, 36% used plant- and animal-derived over-the-counter health care products, 24% used minerals and vitamins, and 11% used manual therapies. The majority of stroke patients (68%) were trying a new type of CAM, and half of the respondents (45%) relied on the knowledge of their general practitioner about CAMs when deciding whether to use them. Most of the stroke patients in this study used CAM, and a half of them reported beneficial effects. Despite the presence of adverse side effects, they tended to be used without discussion with chief physicians, and hence physicians should be actively involved in the usage of CAM

    Bioinspired Heparin Nanosponge Prepared by Photo-crosslinking for Controlled Release of Growth Factors

    Get PDF
    IndexaciĂłn: Scopus.Growth factors have great therapeutic potential for various disease therapy and tissue engineering applications. However, their clinical efficacy is hampered by low bioavailability, rapid degradation in vivo and non-specific biodistribution. Nanoparticle based delivery systems are being evaluated to overcome these limitations. Herein, we have developed a thermosensitive heparin nanosponge (Hep-NS) by a one step photopolymerization reaction between diacrylated pluronic and thiolated heparin molecules. The amount of heparin in Hep-NS was precisely controlled by varying the heparin amount in the reaction feed. Hep-NS with varying amounts of heparin showed similar size and shape properties, though surface charge decreased with an increase in the amount of heparin conjugation. The anticoagulant activity of the Hep-NS decreased by 65% compared to free heparin, however the Hep-NS retained their growth factor binding ability. Four different growth factors, bFGF, VEGF, BMP-2, and HGF were successfully encapsulated into Hep-NS. In vitro studies showed sustained release of all the growth factors for almost 60 days and the rate of release was directly dependent on the amount of heparin in Hep-NS. The released growth factors retained their bioactivity as assessed by a cell proliferation assay. This heparin nanosponge is therefore a promising nanocarrier for the loading and controlled release of growth factors.https://www.nature.com/articles/s41598-017-14040-5.pd

    Effect of Bisphosphonates on Anodized and HeatĂą Treated Titanium Surfaces: An Animal Experimental Study

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141247/1/jper1035.pd
    • 

    corecore