1,931 research outputs found

    Contribution of organic anion-transporting polypeptides 1a/1b to doxorubicin uptake and clearance

    Get PDF
    The organic anion-transporting polypeptides represent an important family of drug uptake transporters that mediate the cellular uptake of a broad range of substrates including numerous drugs. Doxorubicin is a highly efficacious and well-established anthracycline chemotherapeutic agent commonly used in the treatment of a wide range of cancers. Although doxorubicin is a known substrate for efflux transporters such as P-glycoprotein (P-gp; MDR1, ABCB1), significantly less is known regarding its interactions with drug uptake transporters. Here, we investigated the role of organic anion transporting polypeptide (OATP) transporters to the disposition of doxorubicin. A recombinant vaccinia-based method for expressing uptake transporters in HeLa cells revealed that OATP1A2, but not OATP1B1 or OATP1B3, and the rat ortholog Oatp1a4 were capable of significant doxorubicin uptake. Interestingly, transwell assays using Madin-Darby canine kidney II cell line cells stably expressing specific uptake and/or efflux transporters revealed that OATP1B1, OATP1B3, and OATP1A2, either alone or in combination with MDR1, significantly transported doxorubicin. An assessment of polymorphisms in SLCO1A2 revealed that four variants were associated with significantly impaired doxorubicin transport in vitro. In vivo doxorubicin disposition studies revealed that doxorubicin plasma area under the curve was significantly higher (1.7-fold) in Slco1a/1b-/- versus wild-type mice. The liver-to-plasma ratio of doxorubicin was significantly decreased (2.3-fold) in Slco1a/1b2-/- mice and clearance was reduced by 40% compared with wild-type mice, suggesting Oatp1b transporters are important for doxorubicin hepatic uptake. In conclusion, we demonstrate important roles for OATP1A/1B in transporter mediated uptake and disposition of doxorubicin

    A high-throughput approach developing lithium-niobium-tantalum oxides as electrolyte/cathode interlayers for high-voltage all-solid-state lithium batteries

    No full text
    The ever-increasing interest in sustainable mobility is driving the development of innovative batteries with increased energy densities relative to currently commercialized lithium-ion batteries. All-solid-state batteries using 5 V-class positive electrodes are one of those batteries due to their larger volumetric energy density and their superior durability. However, their power density tends to be limited by the large charge transfer resistance at their electrolyte/5 V-electrode interfaces; one explanation for this is the development of significant Li+ deficient layers at the interface. Here we propose a new interlayer material that would effectively resolve the Li+ deficient layers. The partially-crystallized Li56Nb22Ta22 oxide was identified using the molecular beam epitaxy (MBE) based high-throughput physical vapor deposition (HT-PVD) approach. Its higher ionic conductivity of 4.2 ?S cm?1 and higher permittivity of 165 when measured at 254 kHz, relative to those of conventional LiNbO3 interlayer (1.8 ?S cm?1 and 95, respectively) will be effective for fast charge transfer reactions at the electrolyte /cathode interfaces in 5 V-class all-solid-state batteries

    Contribution of hepatic organic anion-transporting polypeptides to docetaxel uptake and clearance

    Get PDF
    The antimicrotubular agent docetaxel is a widely used chemotherapeutic drug for the treatment of multiple solid tumors and is predominantly dependent on hepatic disposition. In this study, we evaluated drug uptake transporters capable of transporting radiolabeled docetaxel. By screening an array of drug uptake transporters in HeLa cells using a recombinant vacciniabased method, five organic anion-transporting polypeptides (OATP) capable of docetaxel uptake were identified: OATP1A2, OATP1B1, OATP1B3, OATP1C1, and Oatp1b2. Kinetic analysis of docetaxel transport revealed similar kinetic parameters among hepatic OATP1B/1b transporters. An assessment of polymorphisms (SNPs) in SLCO1B1 and SLCO1B3 revealed that a number of OATP1B1 and OATP1B3 variants were associated with impaired docetaxel transport. A Transwell-based vectorial transport assay using MDCKII stable cells showed that docetaxel was transported significantly into the apical compartment of double-transfected (MDCKII-OATP1B1/MDR1 and MDCKII-OATP1B3/MDR1) cells compared with singletransfected (MDCKII-OATP1B1 and MDCKII-OATP1B3) cells (P \u3c 0.05) or control (MDCKII-Co) cells (P \u3c 0.001). In vivo docetaxel transport studies in Slco1b2-/- mice showed approximately \u3e5.5-fold higher plasma concentrations (P \u3c 0.01) and approximately 3-fold decreased liver-to-plasma ratio (P \u3c 0.05) of docetaxel compared with wild-type (WT) mice. The plasma clearance of docetaxel in Slco1b2-/- mice was 83% lower than WT mice (P \u3c 0.05). In conclusion, this study demonstrates the important roles of OATP1B transporters to the hepatic disposition and clearance of docetaxel, and supporting roles of these transporters for docetaxel pharmacokinetics

    Optical to near-infrared transmission spectrum of the warm sub-Saturn HAT-P-12b

    Get PDF
    We present the transmission spectrum of HAT-P-12b through a joint analysis of data obtained from the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) and Wide Field Camera 3 (WFC3) and Spitzer, covering the wavelength range 0.3-5.0 μ\mum. We detect a muted water vapor absorption feature at 1.4 μ\mum attenuated by clouds, as well as a Rayleigh scattering slope in the optical indicative of small particles. We interpret the transmission spectrum using both the state-of-the-art atmospheric retrieval code SCARLET and the aerosol microphysics model CARMA. These models indicate that the atmosphere of HAT-P-12b is consistent with a broad range of metallicities between several tens to a few hundred times solar, a roughly solar C/O ratio, and moderately efficient vertical mixing. Cloud models that include condensate clouds do not readily generate the sub-micron particles necessary to reproduce the observed Rayleigh scattering slope, while models that incorporate photochemical hazes composed of soot or tholins are able to match the full transmission spectrum. From a complementary analysis of secondary eclipses by Spitzer, we obtain measured depths of 0.042%±0.013%0.042\%\pm0.013\% and 0.045%±0.018%0.045\%\pm0.018\% at 3.6 and 4.5 μ\mum, respectively, which are consistent with a blackbody temperature of 89070+60890^{+60}_{-70} K and indicate efficient day-night heat recirculation. HAT-P-12b joins the growing number of well-characterized warm planets that underscore the importance of clouds and hazes in our understanding of exoplanet atmospheres.Comment: 25 pages, 19 figures, accepted for publication in AJ, updated with proof correction

    Affect as a Decision-Making System of the Present

    Get PDF
    article is based on the first author’s doctoral dissertation completed under the second author’s direction at Columbia University. The authors thank the other members of the dissertation committee—Eric Johnson, Leonard Lee, Tom Meyvis, and Elke Weber—for their very useful input at various stages of this project. They also thank Jiewen Hong, Seshan Ramaswami, and Anne-Laure Sellier for their helpful comments, and the various members of the Research o

    Factors Associated with Mutations: Their Matching Rates to Cardiovascular and Neurological Diseases

    Get PDF
    Monogenic hypertension is rare and caused by genetic mutations, but whether factors associated with mutations are disease-specific remains uncertain. Given two factors associated with high mutation rates, we tested how many previously known genes match with (i) proximity to telomeres or (ii) high adenine and thymine content in cardiovascular diseases (CVDs) related to vascular stiffening. We extracted genomic information using a genome data viewer. In human chromosomes, 64 of 79 genetic loci involving \u3e25 rare mutations and single nucleotide polymorphisms satisfied (i) or (ii), resulting in an 81% matching rate. However, this high matching rate was no longer observed as we checked the two factors in genes associated with essential hypertension (EH), thoracic aortic aneurysm (TAA), and congenital heart disease (CHD), resulting in matching rates of 53%, 70%, and 75%, respectively. A matching of telomere proximity or high adenine and thymine content projects the list of loci involving rare mutations of monogenic hypertension better than those of other CVDs, likely due to adoption of rigorous criteria for true-positive signals. Our data suggest that the factor–disease matching rate is an accurate tool that can explain deleterious mutations of monogenic hypertension at a \u3e80% match—unlike the relatively lower matching rates found in human genes of EH, TAA, CHD, and familial Parkinson’s disease

    Applicability constraints of the Equivalence Theorem

    Get PDF
    In this work we study the applicability of the Equivalence Theorem, either for unitary models or within an effective lagrangian approach. There are two types of limitations: the existence of a validity energy window and the use of the lowest order in the electroweak constants. For the first kind, we consider some methods, based on dispersion theory or the large NN limit, that allow us to extend the applicability. For the second, we have obtained numerical estimates of the effect of neglecting higher orders in the perturbative expansion.Comment: Final version to appear in Phys. Rev. D. Power counting and energy range estimates have been refined, improved referencing. 4 postscript figures, uses revtex. FT-UCM 1/9

    c-di-GMP modulates type IV MSHA pilus retraction and surface attachment in Vibrio cholerae.

    Get PDF
    Biofilm formation by Vibrio cholerae facilitates environmental persistence, and hyperinfectivity within the host. Biofilm formation is regulated by 3',5'-cyclic diguanylate (c-di-GMP) and requires production of the type IV mannose-sensitive hemagglutinin (MSHA) pilus. Here, we show that the MSHA pilus is a dynamic extendable and retractable system, and its activity is directly controlled by c-di-GMP. The interaction between c-di-GMP and the ATPase MshE promotes pilus extension, whereas low levels of c-di-GMP correlate with enhanced retraction. Loss of retraction facilitated by the ATPase PilT increases near-surface roaming motility, and impairs initial surface attachment. However, prolonged retraction upon surface attachment results in reduced MSHA-mediated surface anchoring and increased levels of detachment. Our results indicate that c-di-GMP directly controls MshE activity, thus regulating MSHA pilus extension and retraction dynamics, and modulating V. cholerae surface attachment and colonization
    corecore