9 research outputs found

    A Heterocyclic-based Bifunctional Sensor for Detecting Cobalt and Zinc Ion

    No full text

    Influence of an abnormal ankle-brachial index on ischemic and bleeding events in patients undergoing percutaneous coronary intervention

    No full text
    Background/Aims Bleeding events after percutaneous coronary intervention (PCI) have important prognostic implications. Data on the influence of an abnormal ankle-brachial index (ABI) on both ischemic and bleeding events in patients undergoing PCI are limited. Methods We included patients who underwent PCI with available ABI data (abnormal ABI, ≤ 0.9 or > 1.4). The primary endpoint was the composite of all-cause death, myocardial infarction (MI), stroke, and major bleeding. Results Among 4,747 patients, an abnormal ABI was observed in 610 patients (12.9%). During follow-up (median, 31 months), the 5-year cumulative incidence of adverse clinical events was higher in the abnormal ABI group than in the normal ABI group: primary endpoint (36.0% vs. 14.5%, log-rank test, p < 0.001); all-cause death (19.4% vs. 5.1%, log-rank test, p < 0.001); MI (6.3% vs. 4.1%, log-rank test, p = 0.013); stroke (6.2% vs. 2.7%, log-rank test, p = 0.001); and major bleeding (8.9% vs. 3.7%, log-rank test, p < 0.001). An abnormal ABI was an independent risk factor for all-cause death (hazard ratio [HR], 3.05; p < 0.001), stroke (HR, 1.79; p = 0.042), and major bleeding (HR, 1.61; p = 0.034). Conclusions An abnormal ABI is a risk factor for both ischemic and bleeding events after PCI. Our study findings may be helpful in determining the optimal method for secondary prevention after PCI

    Impact of height difference between coronary ostium and location of intracoronary pressure sensor on fractional flow reserve measurements.

    No full text
    BackgroundDuring fractional flow reserve (FFR) measurements, distal coronary pressure (Pd) can be influenced by hydrostatic pressure changes resulting from the height difference (HD) between the coronary ostium and the location of the distal pressure sensor.AimsWe investigated the effect of aortocoronary HD on the FFR measurements in each coronary artery.MethodsIn this retrospective cohort study, we analyzed 257 patients who underwent FFR measurements and coronary computed tomography (CCTA) within a year. Using CCTA, we measured HD as the vertical distance between the coronary ostium and a matched point of the distal coronary pressure sensor identified on coronary angiography.ResultsThe location of the Pd sensor was higher than the coronary ostium in the left anterior descending artery (LAD) (-4.64 ± 1.15 cm) and lower than the coronary ostium in the left circumflex artery (LCX) (2.54 ± 1.05 cm) and right coronary artery (RCA) (2.03 ± 1.28 cm). The corrected FFR values by HD were higher in the LAD (0.78 ± 0.09 to 0.82 ± 0.09, PConclusionHD between the coronary ostium and the distal coronary pressure sensor may affect FFR measurements and FFR-guided treatment decisions for coronary artery disease

    Simultaneous Measurements of Chemical Compositions of Fine Particles during Winter Haze Period in Urban Sites in China and Korea

    No full text
    We performed simultaneous measurements of chemical compositions of fine particles in Beijing, China and Gwangju, Korea to better understand their sources during winter haze period. We identified PM2.5 events in Beijing, possibly caused by a combination of multiple primary combustion sources (biomass burning, coal burning, and vehicle emissions) and secondary aerosol formation under stagnant conditions and/or dust sources under high wind speeds. During the PM2.5 events in Gwangju, the contribution of biomass burning and secondary formation of nitrate and organics to the fine particles content significantly increased under stagnant conditions. We commonly observed the increases of nitrogen-containing organic compounds and biomass burning inorganic (K+) and organic (levoglucosan) markers, suggesting the importance of biomass burning sources during the winter haze events (except dust event cases) at both sites. Pb isotope ratios indicated that the fraction of Pb originated from possibly industry and coal combustion sources increased during the PM2.5 events in Gwangju, relative to nonevent days
    corecore