2,505 research outputs found

    Genomic and biologic comparisons of cyprinid herpesvirus 3 strains

    Get PDF
    Cyprinid herpesvirus 3 (CyHV-3) is the archetypal fish alloherpesvirus and the etiologic agent of a lethal disease in common and koi carp. To date, the genome sequences of only four CyHV-3 isolates have been published, but no comparisons of the biologic properties of these strains have been reported. We have sequenced the genomes of a further seven strains from various geographical sources, and have compared their growth in vitro and virulence in vivo. The major findings were: (i) the existence of the two genetic lineages previously described as European and Asian was confirmed, but inconsistencies between the geographic origin and genotype of some strains were revealed; (ii) potential inter-lineage recombination was detected in one strain, which also suggested the existence of a third, as yet unidentified lineage; (iii) analysis of genetic disruptions led to the identification of non-essential genes and their potential role in virulence; (iv) comparison of the in vitro and in vivo properties of strains belonging to the two lineages revealed that inter-lineage polymorphisms do not contribute to the differences in viral fitness observed; and (v) a negative correlation was observed among strains between viral growth in vitro and virulence in vivo. This study illustrates the importance of coupling genomic and biologic comparisons of viral strains in order to enhance understanding of viral evolution and pathogenesis

    Pion Breather States in QCD

    Get PDF
    We describe a class of pionic breather solutions (PBS) which appear in the chiral lagrangian description of low-energy QCD. These configurations are long-lived, with lifetimes greater than 10310^3 fm/c, and could arise as remnants of disoriented chiral condensate (DCC) formation at RHIC. We show that the chiral lagrangian equations of motion for a uniformly isospin-polarized domain reduce to those of the sine-gordon model. Consequently, our solutions are directly related to the breather solutions of sine-gordon theory in 3+1 dimensions. We investigate the possibility of PBS formation from multiple domains of DCC, and show that the probability of formation is non-negligible.Comment: 9 pages, 4 figure

    Signals of Disoriented Chiral Condensate

    Full text link
    If a disoriented chiral condensate is created over an extended space-time region following a rapid cooling in hadronic or nuclear collisions, the misalignment of the condensate with the electroweak symmetry breaking can generate observable effects in the processes which involve both strong and electromagnetic interactions. We point out the relevance of the dilepton decay of light vector mesons as a signal for formation of the disoriented condensate. We predict that the decay \rho^0 to dileptons will be suppressed and/or the \rho resonance peak widens, while the decay \omega to dileptons will not be affected by the condensate.Comment: 13 pages in LaTeX, UCB-PTH-94/05, LBL-3533

    Boundary and Coulomb Effects on Boson Systems in High-Energy Heavy-Ion Collisions

    Full text link
    The boundary of a boson system plays an important role in determining the momentum distribution of the bosons. For a boson system with a cylindrical boundary, the momentum distribution is enhanced at high transverse momenta but suppressed at low transverse momenta, relative to a Bose-Einstein distribution. The boundary effects on systems of massless gluons and massive pions are studied. For gluons in a quark-gluon plasma, the presence of the boundary may modify the signals for the quark-gluon plasma. For pions in a pion system in heavy-ion collisions, Coulomb final-state interactions with the nuclear participants in the vicinity of the central rapidity region further modify the momentum distribution at low transverse momenta. By including both the boundary effect and the Coulomb final-state interactions we are able to account for the behavior of the π−\pi^{-} transverse momentum spectrum observed in many heavy-ion experiments, notably at low transverse momenta.Comment: 15 pages Postscript uuencoded tar-comprssed file, 9 Postscript figures uuencoded tar-compressed fil

    Quantum Logic for Trapped Atoms via Molecular Hyperfine Interactions

    Full text link
    We study the deterministic entanglement of a pair of neutral atoms trapped in an optical lattice by coupling to excited-state molecular hyperfine potentials. Information can be encoded in the ground-state hyperfine levels and processed by bringing atoms together pair-wise to perform quantum logical operations through induced electric dipole-dipole interactions. The possibility of executing both diagonal and exchange type entangling gates is demonstrated for two three-level atoms and a figure of merit is derived for the fidelity of entanglement. The fidelity for executing a CPHASE gate is calculated for two 87Rb atoms, including hyperfine structure and finite atomic localization. The main source of decoherence is spontaneous emission, which can be minimized for interaction times fast compared to the scattering rate and for sufficiently separated atomic wavepackets. Additionally, coherent couplings to states outside the logical basis can be constrained by the state dependent trapping potential.Comment: Submitted to Physical Review

    Hydrodynamical assessment of 200 AGeV collisions

    Full text link
    We are analyzing the hydrodynamics of 200 A GeV S+S collisions using a new approach which tries to quantify the uncertainties arising from the specific implementation of the hydrodynamical model. Based on a previous phenomenological analysis we use the global hydrodynamics model to show that the amount of initial flow, or initial energy density, cannot be determined from the hadronic momentum spectra. We additionally find that almost always a sizeable transverse flow deve- lops, which causes the system to freeze out, thereby limiting the flow velocity in itself. This freeze-out dominance in turn makes a distinction between a plasma and a hadron resonance gas equation of state very difficult, whereas a pure pion gas can easily be ruled out from present data. To complete the picture we also analyze particle multiplicity data, which suggest that chemical equilibrium is not reached with respect to the strange particles. However, the over- population of pions seems to be at most moderate, with a pion chemical potential far away from the Bose divergence.Comment: 19 pages, 11 figs in separate uuencoded file, for LateX, epsf.tex, dvips, TPR-94-5 and BNL-(no number yet

    Out of equilibrium O (N) linear-sigma system - Construction of perturbation theory with gap- and Boltzmann-equations

    Full text link
    We establish from first principles a perturbative framework that allows us to compute reaction rates for processes taking place in nonequilibrium O(N)O (N) linear-sigma systems in broken phase. The system of our concern is quasiuniform system near equilibrium or nonequilibrium quasistationary system. We employ the closed-time-path formalism and use the so-called gradient approximation. No further approximation is introduced. In the course of construction of the framework, we obtain the gap equation that determines the effective masses of π\pi and of σ\sigma, and the generalized Boltzmann equation that describes the evolution of the number-density functions of π\pi and of σ\sigma.Comment: 18 page

    Remnants of Initial Anisotropic High Energy Density Domains in Nucleus-Nucleus Collisions

    Get PDF
    Anisotropic high energy density domains may be formed at early stages of ultrarelativistic heavy ion collisions, e.g. due to phase transition dynamics or non-equilibrium phenomena like (mini-)jets. Here we investigate hadronic observables resulting from an initially created anisotropic high energy density domain. Based on our studies using a transport model we find that the initial anisotropies are reflected in the freeze-out multiplicity distribution of both pions and kaons due to secondary hadronic rescattering. The anisotropy appears to be stronger for particles at high transverse momenta. The overall kaon multiplicity increases with large fluctuations of local energy densities, while no change has been found in the pion multiplicity.Comment: Submitted to PR

    Munchausen by internet: current research and future directions.

    Get PDF
    The Internet has revolutionized the health world, enabling self-diagnosis and online support to take place irrespective of time or location. Alongside the positive aspects for an individual's health from making use of the Internet, debate has intensified on how the increasing use of Web technology might have a negative impact on patients, caregivers, and practitioners. One such negative health-related behavior is Munchausen by Internet

    Severe Acute Respiratory Syndrome–associated Coronavirus Infection

    Get PDF
    Whether severe acute respiratory syndrome–associated coronavirus (SARS-CoV) infection can be asymptomatic is unclear. We examined the seroprevalence of SARS-CoV among 674 healthcare workers from a hospital in which a SARS outbreak had occurred. A total of 353 (52%) experienced mild self-limiting illnesses, and 321 (48%) were asymptomatic throughout the course of these observations. None of these healthcare workers had antibody to SARS CoV, indicating that subclinical or mild infection attributable to SARS CoV in adults is rare
    • …
    corecore