186,631 research outputs found

    Gauge Theory of Gravity Requires Massive Torsion Field

    Get PDF
    One of the greatest unsolved issues of the physics of this century is to find a quantum field theory of gravity. According to a vast amount of literature unification of quantum field theory and gravitation requires a gauge theory of gravity which includes torsion and an associated spin field. Various models including either massive or massless torsion fields have been suggested. We present arguments for a massive torsion field, where the probable rest mass of the corresponding spin three gauge boson is the Planck mass.Comment: 3 pages, Revte

    Separable states to distribute entanglement

    Full text link
    It was shown that two distant particles can be entangled by sending a third particle never entangled with the other two [T. S. Cubitt et al., Phys. Rev. Lett. 91, 037902 (2003)]. In this paper, we investigate a class of three-qubit separable states to distribute entanglement by the same way, and calculate the maximal amount of entanglement which two particles of separable states in the class can have after applying the way.Comment: 4 pages, no figures, Revised argumen

    Large-N Yang-Mills Theory as Classical Mechanics

    Get PDF
    To formulate two-dimensional Yang-Mills theory with adjoint matter fields in the large-N limit as classical mechanics, we derive a Poisson algebra for the color-invariant observables involving adjoint matter fields. We showed rigorously in J. Math. Phys. 40, 1870 (1999) that different quantum orderings of the observables produce essentially the same Poisson algebra. Here we explain, in a less precise but more pedagogical manner, the crucial topological graphical observations underlying the formal proof.Comment: 8 pages, 3 eps figues, LaTeX2.09, aipproc macros needed; conference proceeding of MRST '99 (10-12 May, 1999, Carleton University, Canada

    A Lie Algebra for Closed Strings, Spin Chains and Gauge Theories

    Get PDF
    We consider quantum dynamical systems whose degrees of freedom are described by N×NN \times N matrices, in the planar limit N→∞N \to \infty. Examples are gauge theoires and the M(atrix)-theory of strings. States invariant under U(N) are `closed strings', modelled by traces of products of matrices. We have discovered that the U(N)-invariant opertors acting on both open and closed string states form a remarkable new Lie algebra which we will call the heterix algebra. (The simplest special case, with one degree of freedom, is an extension of the Virasoro algebra by the infinite-dimensional general linear algebra.) Furthermore, these operators acting on closed string states only form a quotient algebra of the heterix algebra. We will call this quotient algebra the cyclix algebra. We express the Hamiltonian of some gauge field theories (like those with adjoint matter fields and dimensionally reduced pure QCD models) as elements of this Lie algebra. Finally, we apply this cyclix algebra to establish an isomorphism between certain planar matrix models and quantum spin chain systems. Thus we obtain some matrix models solvable in the planar limit; e.g., matrix models associated with the Ising model, the XYZ model, models satisfying the Dolan-Grady condition and the chiral Potts model. Thus our cyclix Lie algebra described the dynamical symmetries of quantum spin chain systems, large-N gauge field theories, and the M(atrix)-theory of strings.Comment: 52 pages, 8 eps figures, LaTeX2.09; this is the published versio

    Ultra-dense phosphorus in germanium delta-doped layers

    Full text link
    Phosphorus (P) in germanium (Ge) delta-doped layers are fabricated in ultra-high vacuum by adsorption of phosphine molecules onto an atomically flat clean Ge(001) surface followed by thermal incorporation of P into the lattice and epitaxial Ge overgrowth by molecular beam epitaxy. Structural and electrical characterizations show that P atoms are confined, with minimal diffusion, into an ultra-narrow 2-nm-wide layer with an electrically-active sheet carrier concentration of 4x10^13 cm-2 at 4.2 K. These results open up the possibility of ultra-narrow source/drain regions with unprecedented carrier densities for Ge n-channel field effect transistors

    Ferromagnetism below 10 K in Mn doped BiTe

    Full text link
    Ferromagnetism is observed below 10 K in [Bi0.75Te0.125Mn0.125]Te. This material has the BiTe structure, which is made from the stacking of two Te-Bi-Te-Bi-Te blocks and one Bi-Bi block per unit cell. Crystal structure analysis shows that Mn is localized in the Bi2 blocks, and is accompanied by an equal amount of TeBi anti-site occupancy in the Bi2Te3 blocks. These TeBi anti-site defects greatly enhance the Mn solubility. This is demonstrated by comparison of the [Bi1-xMnx]Te and [Bi1-2xTexMnx]Te series; in the former, the solubility is limited to x = 0.067, while the latter has xmax = 0.125. The magnetism in [Bi1-xMnx]Te changes little with x, while that for [Bi1-2xTexMnx]Te shows a clear variation, leading to ferromagnetism for x > 0.067. Magnetic hysteresis and the anomalous Hall Effect are observed for the ferromagnetic samples.Comment: Accepted for publication in Phys. Rev.
    • …
    corecore