3,191 research outputs found

    Superconductivity enhanced conductance fluctuations in few layer graphene nanoribbons

    Full text link
    We investigate the mesoscopic disorder induced rms conductance variance δG\delta G in a few layer graphene nanoribbon (FGNR) contacted by two superconducting (S) Ti/Al contacts. By sweeping the back-gate voltage, we observe pronounced conductance fluctuations superimposed on a linear background of the two terminal conductance G. The linear gate-voltage induced response can be modeled by a set of inter-layer and intra-layer capacitances. δG\delta G depends on temperature T and source-drain voltage VsdV_{sd}. δG\delta G increases with decreasing T and Vsd|V_{sd}|. When lowering Vsd|V_{sd}|, a pronounced cross-over at a voltage corresponding to the superconducting energy gap Δ\Delta is observed. For |V_{sd}|\ltequiv \Delta the fluctuations are markedly enhanced. Expressed in the conductance variance GGSG_{GS} of one graphene-superconducutor (G-S) interface, values of 0.58 e^2/h are obtained at the base temperature of 230 mK. The conductance variance in the sub-gap region are larger by up to a factor of 1.4-1.8 compared to the normal state. The observed strong enhancement is due to phase coherent charge transfer caused by Andreev reflection at the nanoribbon-superconductor interface.Comment: 15 pages, 5 figure

    From Andreev to Majorana bound states in hybrid superconductor-semiconductor nanowires

    Full text link
    Electronic excitations above the ground state must overcome an energy gap in superconductors with spatially-homogeneous s-wave pairing. In contrast, inhomogeneous superconductors such as those with magnetic impurities or weak links, or heterojunctions containing normal metals or quantum dots, can host subgap electronic excitations that are generically known as Andreev bound states (ABSs). With the advent of topological superconductivity, a new kind of ABS with exotic qualities, known as Majorana bound state (MBS), has been discovered. We review the main properties of ABSs and MBSs, and the state-of-the-art techniques for their detection. We focus on hybrid superconductor-semiconductor nanowires, possibly coupled to quantum dots, as one of the most flexible and promising experimental platforms. We discuss how the combined effect of spin-orbit coupling and Zeeman field in these wires triggers the transition from ABSs into MBSs. We show theoretical progress beyond minimal models in understanding experiments, including the possibility of different types of robust zero modes that may emerge without a band-topological transition. We examine the role of spatial non-locality, a special property of MBS wavefunctions that, together with non-Abelian braiding, is the key to realizing topological quantum computation.Comment: Review. 23 pages, 8 figures, 1 table. Shareable published version by Springer Nature at https://rdcu.be/b7DWT (free to read but not to download

    Dephasing time of composite fermions

    Full text link
    We study the dephasing of fermions interacting with a fluctuating transverse gauge field. The divergence of the imaginary part of the fermion self energy at finite temperatures is shown to result from a breakdown of Fermi's golden rule due to a faster than exponential decay in time. The strong dephasing affects experiments where phase coherence is probed. This result is used to describe the suppression of Shubnikov-de Haas (SdH) oscillations of composite fermions (oscillations in the conductivity near the half-filled Landau level). We find that it is important to take into account both the effect of dephasing and the mass renormalization. We conclude that while it is possible to use the conventional theory to extract an effective mass from the temperature dependence of the SdH oscillations, the resulting effective mass differs from the mm^\ast of the quasiparticle in Fermi liquid theory.Comment: 14 pages, RevTeX 3.0, epsf, 1 EPS figur

    Heat dissipation mechanisms in hybrid superconductor-semiconductor devices revealed by Joule spectroscopy

    Full text link
    Understanding heating and cooling mechanisms in mesoscopic superconductor-semiconductor hybrid devices is crucial for their application in quantum technologies. Owing to the poor thermal conductivity of typical devices, heating effects can drive superconducting-to-normal phase transitions even at low applied bias, observed as sharp conductance dips through the loss of Andreev excess currents. Tracking such dips across magnetic field, cryostat temperature, and applied microwave power, which constitutes Joule spectroscopy, allows to uncover the underlying cooling bottlenecks in different parts of a device. By applying this technique, we analyze heat dissipation in devices based on full-shell InAs-Al nanowires and reveal that superconducting islands are strongly susceptible to heating as their cooling is limited by the rather inefficient electron-phonon coupling, as opposed to grounded superconductors that primarily cool by quasiparticle diffusion. Our measurements indicate that powers as low as 50-150 pW are able to fully suprpress the superconductivity of an island. Finally, we show that applied microwaves lead to similar heating effects as DC signals, and explore the interplay of the microwave frequency and the effective electron-phonon relaxation time.Comment: 9 pages, 4 figure

    Picosecond absorption dynamics of photoexcited InGaP epitaxial films

    Get PDF
    Includes bibliographical references (page 92).The absorption recovery of a photoexcited InGaP epitaxial film 0.4 µm thick was investigated using the pump-probe laser technique and found to have a time constant of 55 ps at room temperature. Measurements done in the temperature range of 300-50 K show the decay of the photoexcited carrier distribution to be dominated by ambipolar diffusion and surface recombination. The measured absorption recovery time constant corresponds to an ambipolar diffusion coefficient D > 2.8 cm2/s and a surface recombination velocity of S > 4 × 105 cm/s at room temperature.This work was supported by the National Science Foundation grant (USA/Argentina) INT 8802563, the Air Force Office of Scientific Research (contract 89-0513), and the Center for Optoelectronic Computing Systems, sponsored by the National Science Foundation/Engineering Research Center grant ECD 9015128 and by the Colorado Advanced Technology Institute, an agency of the State of Colorado. C. S. Menoni acknowledges the support of the National Science Foundation grant ECS 9008899 and the CSU Faculty Research Grant

    Criteria for the diagnosis of corticobasal degeneration

    Get PDF
    Current criteria for the clinical diagnosis of pathologically confirmed corticobasal degeneration (CBD) no longer reflect the expanding understanding of this disease and its clinicopathologic correlations. An international consortium of behavioral neurology, neuropsychology, and movement disorders specialists developed new criteria based on consensus and a systematic literature review. Clinical diagnoses (early or late) were identified for 267 nonoverlapping pathologically confirmed CBD cases from published reports and brain banks. Combined with consensus, 4 CBD phenotypes emerged: corticobasal syndrome (CBS), frontal behavioral-spatial syndrome (FBS), nonfluent/agrammatic variant of primary progressive aphasia (naPPA), and progressive supranuclear palsy syndrome (PSPS). Clinical features of CBD cases were extracted from descriptions of 209 brain bank and published patients, providing a comprehensive description of CBD and correcting common misconceptions. Clinical CBD phenotypes and features were combined to create 2 sets of criteria: more specific clinical research criteria for probable CBD and broader criteria for possible CBD that are more inclusive but have a higher chance to detect other tau-based pathologies. Probable CBD criteria require insidious onset and gradual progression for at least 1 year, age at onset ≥50 years, no similar family history or known tau mutations, and a clinical phenotype of probable CBS or either FBS or naPPA with at least 1 CBS feature. The possible CBD category uses similar criteria but has no restrictions on age or family history, allows tau mutations, permits less rigorous phenotype fulfillment, and includes a PSPS phenotype. Future validation and refinement of the proposed criteria are needed

    Overscreening of magnetic impurities in dx2y2d_{x^2-y^2} wave superconductors

    Full text link
    We consider the screening of a magnetic impurity in a dx2y2d_{x^2-y^2} wave superconductor. The properties of the dx2y2d_{x^2-y^2} state lead to an unusual behavior in the impurity magnetic susceptibility, the impurity specific heat and in the quasiparticle phase shift which can be used to diagnose the nature of the condensed state. We construct an effective theory for this problem and show that it is equivalent to a multichannel (one per node) non-marginal Kondo problem with linear density of states and coupling constant J. There is a quantum phase transition from an unscreened impurity state to an overscreened Kondo state at a critical value J_c which varies with Δ0\Delta_0, the superconducting gap away from the nodes. In the overscreened phase, the impurity Fermi level ϵf\epsilon_f and the amplitude Δ\Delta of the ground state singlet vanish at J_c like Δ0exp(const./Δ)\Delta_0 \exp(- const. / \Delta) and J-J_c respectively. We derive the scaling laws for the susceptibility and specific heat in the overscreened phase at low fields and temperatures.Comment: 43 pages; shortened version; a number of typos have been correcte

    Directed paths on hierarchical lattices with random sign weights

    Full text link
    We study sums of directed paths on a hierarchical lattice where each bond has either a positive or negative sign with a probability pp. Such path sums JJ have been used to model interference effects by hopping electrons in the strongly localized regime. The advantage of hierarchical lattices is that they include path crossings, ignored by mean field approaches, while still permitting analytical treatment. Here, we perform a scaling analysis of the controversial ``sign transition'' using Monte Carlo sampling, and conclude that the transition exists and is second order. Furthermore, we make use of exact moment recursion relations to find that the moments always determine, uniquely, the probability distribution $P(J)$. We also derive, exactly, the moment behavior as a function of $p$ in the thermodynamic limit. Extrapolations ($n\to 0$) to obtain for odd and even moments yield a new signal for the transition that coincides with Monte Carlo simulations. Analysis of high moments yield interesting ``solitonic'' structures that propagate as a function of pp. Finally, we derive the exact probability distribution for path sums JJ up to length L=64 for all sign probabilities.Comment: 20 pages, 12 figure

    Separation of Spin and Charge Quantum Numbers in Strongly Correlated Systems

    Full text link
    In this paper we reexamine the problem of the separation of spin and charge degrees of freedom in two dimensional strongly correlated systems. We establish a set of sufficient conditions for the occurence of spin and charge separation. Specifically, we discuss this issue in the context of the Heisenberg model for spin-1/2 on a square lattice with nearest (J1J_1) and next-nearest (J2J_2) neighbor antiferromagnetic couplings. Our formulation makes explicit the existence of a local SU(2) gauge symmetry once the spin-1/2 operators are replaced by bound states of spinons. The mean-field theory for the spinons is solved numerically as a function of the ratio J2/J1J_2/J_1 for the so-called s-RVB Ansatz. A second order phase transition exists into a novel flux state for J2/J1>(J2/J1)crJ_2/J_1>(J_2/J_1)_{{\rm cr}}. We identify the range 0<J2/J1<(J2/J1)cr0<J_2/J_1<(J_2/J_1)_{\rm cr} as the s-RVB phase. It is characterized by the existence of a finite gap to the elementary excitations (spinons) and the breakdown of all the continuous gauge symmetries. An effective continuum theory for the spinons and the gauge degrees of freedom is constructed just below the onset of the flux phase. We argue that this effective theory is consistent with the deconfinement of the spinons carrying the fundamental charge of the gauge group. We contrast this result with the study of the one dimensional quantum antiferromagnet within the same approach. We show that in the one dimensional model, the spinons of the gauge picture are always confined and thus cannot be identified with the gapless spin-1/2 excitations of the quantum antiferromagnet Heisenberg model.Comment: 56 pages, RevteX 3.
    corecore