214,491 research outputs found

    A continuum model for entangled fibres

    Get PDF
    Motivated by the study of fibre dynamics in the carding machine, a continuum model for the motion of a medium composed of fibres is derived under the assumption that the dominant forces are due to fibre-fibre interactions and that the material is in tension. To characterise the material we include the averaged values of density and velocity and introduce variables to describe the mean direction, alignment and entanglement. We assume that the bulk stress of the material depends on the density, entanglement, degree of alignment, average direction and shear-rates. A kinematic equation for the average direction and two proposed heuristic laws for the evolution of entanglement and degree of alignment are given to close the system. Extensional and shearing simulations are in good qualitative agreement with experimental results

    Antiferromagnetic phase transition in a nonequilibrium lattice of Rydberg atoms

    Get PDF
    We study a driven-dissipative system of atoms in the presence of laser excitation to a Rydberg state and spontaneous emission. The atoms interact via the blockade effect, whereby an atom in the Rydberg state shifts the Rydberg level of neighboring atoms. We use mean-field theory to study how the Rydberg population varies in space. As the laser frequency changes, there is a continuous transition between the uniform and antiferromagnetic phases. The nonequilibrium nature also leads to a novel oscillatory phase and bistability between the uniform and antiferromagnetic phases.Comment: 4 pages + appendi

    Relativistic Quantum Thermodynamics of Ideal Gases in 2 Dimensions

    Full text link
    In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.Comment: 6 pages, 1 figur

    A Theory of Gamma-Ray Bursts

    Get PDF
    We present a specific scenario for the link between GRB and hypernovae, based on Blandford-Znajek extraction of black-hole spin energy. Such a mechanism requires a high angular momentum in the progenitor object. The observed association of gamma-ray bursts with type Ibc supernovae leads us to consider massive helium stars that form black holes at the end of their lives as progenitors. We combine the numerical work of MacFadyen & Woosley with analytic calculations, to show that about 1E53 erg each are available to drive the fast GRB ejecta and the supernova. The GRB ejecta are driven by the power output through the open field lines, whereas the supernova is powered by closed filed lines and jet shocks. We also present a much simplified approximate derivation of these energetics. Helium stars that leave massive black-hole remnants in special ways, namely via soft X-ray transients or very massive WNL stars. Since binaries naturally have high angular momentum, we propose a link between black-hole transients and gamma-ray bursts. Recent observations of one such transient, GRO J1655-40/Nova Scorpii 1994, explicitly support this connection: its high space velocity indicates that substantial mass was ejected in the formation of the black hole, and the overabundance of alpha-nuclei, especially sulphur, indicates that the explosion energy was extreme, as in SN 1998bw/GRB 980425. (abstract shortened)Comment: 32 pages, 8 figures, accepted for publication in New Astronom

    Noise and Equivalent Circuit of Double Injection

    Get PDF
    Measurements of the high‐frequency noise of a silicon double‐injection diode result in 〈i^2〉 = α⋅4kT(1/r)Δf with α=1.04 and in agreement with the literature. A new interpretation demands Nyquist noise with α≥1 in these devices at high frequencies. This is in accord with an equivalent circuit derived for the double‐injection process. Speculations are made on the general validity of Nyquist noise in nonlinear devices at high frequencies. In addition, generation‐recombination noise is suggested as the prime source of the low‐frequency noise

    Observation of the spontaneous vortex phase in the weakly ferromagnetic superconductor ErNi2_{2}B2_{2}C: A penetration depth study

    Full text link
    The coexistence of weak ferromagnetism and superconductivity in ErNi2_{2}B2% _{2}C suggests the possibility of a spontaneous vortex phase (SVP) in which vortices appear in the absence of an external field. We report evidence for the long-sought SVP from the in-plane magnetic penetration depth Δλ(T)\Delta \lambda (T) of high-quality single crystals of ErNi2_{2}B2_{2}C. In addition to expected features at the N\'{e}el temperature TNT_{N} = 6.0 K and weak ferromagnetic onset at TWFM=2.3T_{WFM}=2.3 K, Δλ(T)\Delta \lambda (T) rises to a maximum at Tm=0.45T_{m}=0.45 K before dropping sharply down to ∌\sim 0.1 K. We assign the 0.45 K-maximum to the proliferation and freezing of spontaneous vortices. A model proposed by Koshelev and Vinokur explains the increasing Δλ(T)\Delta \lambda (T) as a consequence of increasing vortex density, and its subsequent decrease below TmT_{m} as defect pinning suppresses vortex hopping.Comment: 5 pages including figures; added inset to Figure 2; significant revisions to tex
    • 

    corecore