2,701 research outputs found
Cooper-Pair Spin Current in a Strontium Ruthenate Heterostructure
It has been recognized that the condensation of spin-triplet Cooper pairs
requires not only the broken gauge symmetry but also the spin ordering as well.
One consequence of this is the possibility of the Cooper-pair spin current
analogous to the magnon spin current in magnetic insulators, the analogy also
extending to the existence of the Gilbert damping of the collective
spin-triplet dynamics. The recently fabricated heterostructure of the thin film
of the itinerant ferromagnet SrRuO3 on the bulk Sr2RuO4, the best-known
candidate material for the spin-triplet superconductor, offers a promising
platform for generating such spin current. We will show how such
heterostructure allows us to not only realize the long-range spin valve but
also electrically drive the collective spin mode of the spin-triplet order
parameter. Our proposal represents both a new realization of the spin
superfluidity and a transport signature of the spin-triplet superconductivity.Comment: 5 pages, 3 figure
Magnon topology and thermal Hall effect in trimerized triangular lattice antiferromagnet
The non-trivial magnon band topology and its consequent responses have been
extensively studied in two-dimensional magnetisms. However, the triangular
lattice antiferromagnet (TLAF), the best-known frustrated two-dimensional
magnet, has received less attention than the closely related Kagome system,
because of the spin-chirality cancellation in the umbrella ground state of the
undistorted TLAF. In this work, we study the band topology and the thermal Hall
effect (THE) of the TLAF with (anti-)trimerization distortion under the
external perpendicular magnetic field using the linearized spin wave theory. We
show that the spin-chirality cancellation is removed in such case, giving rise
to the non-trivial magnon band topology and the finite THE. Moreover, the
magnon bands exhibit band topology transitions tuned by the magnetic field. We
demonstrate that such transitions are accompanied by the logarithmic divergence
of the first derivative of the thermal Hall conductivity. Finally, we examine
the above consequences by calculating the THE in the hexagonal manganite
YMnO, well known to have anti-trimerization.Comment: 6 + 7 pages, 3 + 5 figures, 0 + 1 table; Journal reference adde
Functional Characterization of Siberian Wild Rye Grass \u3cem\u3eEsHSP 16.9\u3c/em\u3e Gene Conferring Diverse Stress Tolerance in Prokaryotic Cells
Siberian wild rye (Elymus sibiricus L.) is a perennial, caespitose, and self-pollinating grass indigenous to Northern Asia and also is widely distributed from Northern Europe to Japan. The plant shows strong environmental adaptability with tolerance to drought and cold; thus, it is often used as forage resources (Yan et al., 2007). Environmental stresses caused by global warming are acknowledged to be as a serious issue in agriculture due to reductions of crop productivity (Ahuja et al., 2010). Genetic natural breeding of Siberian wild rye would potentially increase the productivity of forage crops; however, genetic studies on this grass have yet to be conducted. Heat shock proteins (Hsps) are the well characterized stress inducible proteins playing as molecular chaperones in prokaryotes and eukaryotes. We have also identified two differently localized small Hsps: rice chloroplastic and alfalfa mitochondrial Hsps confer tolerance to oxidative and heat stresses in tall fescue and to salinity and arsenic stresses in E. coli, tobacco, and tall fescue, respectively (Lee et al., 2012a; Lee et al., 2012b). Here, we cloned the small Hsp16.9 gene from various heat stress-induced fragments in Siberian wild rye using differentially expressed gene (DEG) analysis. We examined the mRNA expression of EsHsp16.9, in vitro molecular chaperone activity and in vivo stress tolerance by using a prokaryotic system against diverse environmental stresse
Competing states for the fractional quantum Hall effect in the 1/3-filled second Landau level
In this work, we investigate the nature of the fractional quantum Hall state
in the 1/3-filled second Landau level (SLL) at filling factor (and
8/3 in the presence of the particle-hole symmetry) via exact diagonalization in
both torus and spherical geometries. Specifically, we compute the overlap
between the exact 7/3 ground state and various competing states including (i)
the Laughlin state, (ii) the fermionic Haffnian state, (iii) the
antisymmetrized product state of two composite fermion seas at 1/6 filling, and
(iv) the particle-hole (PH) conjugate of the parafermion state. All these
trial states are constructed according to a guiding principle called the
bilayer mapping approach, where a trial state is obtained as the
antisymmetrized projection of a bilayer quantum Hall state with interlayer
distance as a variational parameter. Under the proper understanding of the
ground-state degeneracy in the torus geometry, the parafermion state can
be obtained as the antisymmetrized projection of the Halperin (330) state.
Similarly, it is proved in this work that the fermionic Haffnian state can be
obtained as the antisymmetrized projection of the Halperin (551) state. It is
shown that, while extremely accurate at sufficiently large positive Haldane
pseudopotential variation , the Laughlin state loses its
overlap with the exact 7/3 ground state significantly at . At slightly negative , it is shown that the
PH-conjugated parafermion state has a substantial overlap with the exact
7/3 ground state, which is the highest among the above four trial states.Comment: 22 pages, 5 figure
Luxury Fashion Consumption: The Interplay of Guilt and Pleasure
We draw on the Affect Balance Theory to (a) explore whether two distinct modes of luxury consumption (i.e., conspicuous consumption and style consumption) are related to pleasure (i.e., positive affect) and guilt (i.e., negative affect); and (b) determine whether pleasure and guilt interplay to make interactive impacts, as well as independent impacts, on consumers’ repurchase intention
Anhydrous pentaguanidinium dihydrogen nonavanado(IV)platinate(IV)
The title compound, (CH6N3)5[H2PtV9O28], containing the nonavanadoplatinate(IV) polyanion, was obtained by hydrothermal reaction. The polyanion has approximate C
2v symmetry. The two Pt-bound μ2-O atoms are protonated in the polyanion. The heteropolyanions form inversion-generated dimers, {[H2PtV9O28]2}10−, held together by each of the two μ2-O—H⋯μ2-O and μ2-O—H⋯μ3-O hydrogen bonds. The guanidinium cations are hydrogen bonded with the μ2- and terminal O atoms of the polyanion, connecting the polyanions into a three-dimensional network
Redetermination of heptapotassium nonahydrogen bis[α-hexamolybdoplatinate(IV)] undecahydrate
Previously reported at a temperature of 298 (2) K [Lee & Joo (2007 ▶). Acta Cryst. E63, i11–i13], the title compound, K7[H9α-Pt2Mo12O48]·11H2O or K7[H4.5α-PtMo6O24]2·11H2O, was redetermined at 146 (2) K in order to determine whether the H atom in the hydrogen bond that crosses the center of symmetry was located at the center of symmetry or disordered around it as assumed in the previous study. During the present low-temperature study it was found on the center of symmetry. One water molecule shows half-occupancy
- …