9 research outputs found

    Coordinating Pricing and Empty Container Repositioning in Two-Depot Shipping Systems

    Get PDF
    This paper studies joint decisions on pricing and empty container repositioning in two- depot shipping services with stochastic shipping demand. We formulate the problem as a stochastic dynamic programming (DP) model. The exact DP may have a high-dimensional state space due to in-transit containers. To cope with the curse of dimensionality, we develop an approximate model where the number of in-transit containers on each vessel is approxi- mated with a fixed container flow predetermined by solving a static version of the problem. Moreover, we show that the approximate value function is Lâ™®-concave, thereby characterizing the structure of the optimal control policy for the approximate model. With the upper bound obtained by solving the information relaxation-based dual of the exact DP, we numerically show that the control policies generated from our approximate model are close to optimal when transit times span multiple periods

    Shipping to heterogeneous customers with competing carriers

    Get PDF
    __Problem definition:__ We consider a shipper transporting and selling a short-life-cycle product to a destination market. Customers in the destination market obtain higher utility if they receive the product earlier but their time preferences are heterogeneous. Two transportation service providers (i.e., carriers) offer distinct speeds and competing freight rates. This study analyzes the shipper’s optimal shipping strategy under carrier competition. __Academic/Practical relevance:__ Perishable products are commonly shipped via multiple means of transport. The faster the mode of transport is, the more expensive it is, but speed enables the product to reach the market with higher quality. In addition to the trade-off between speed and cost, the competition between carriers can also influence the shipper’s transportation procurement strategies. Our model highlights the implications of carrier competition in a dual sourcing problem. __Methodology:__ We study a two-stage game-theoretical framework: Carriers first compete on freight rates, and then the shipper determines the shipping schedule. __Results:__ The shipper may benefit from product differentiation via dual-mode shipping, in which the shipment that arrives earlier is sold at a premium price. In equilibrium, the shipper’s profit can be U-shaped in the speed difference between carriers. Dual sourcing may be inferior to simply restricting a single shipping service in a winner-take-all fashion. __Managerial implications:__ This study reveals an underlying trade-off between the operational advantage from product differentiation and the cost advantage from carrier competition. To benefit from either of these advantages, a shipper should use two carriers with either very distinct or very similar speeds. Single sourcing may bring an additional cost advantage that outweighs the value of production differentiation through dual sourcing

    The phenotype of Floating-Harbor syndrome: Clinical characterization of 52 individuals with mutations in exon 34 of SRCAP

    Get PDF
    Background: Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delays in expressive language, and a distinctive facial appearance. Recently, heterozygous truncating mutations in SRCAP were determined to be disease-causing. With the availability of a DNA based confirmatory test, we set forth to define the clinical features of this syndrome. Methods and results. Clinical information on fifty-two individuals with SRCAP mutations was collected using standardized questionnaires. Twenty-four males and twenty-eight females were studied with ages ranging from

    A Dynamic Lot-Sizing Model with Demand Time Windows

    Get PDF
    One of the basic assumptions of the classical dynamic lot-sizing model is that the aggregate demand of a given period must be satisfied in that period. Under this assumption, if backlogging is not allowed then the demand of a given period cannot be delivered earlier or later than the period. If backlogging is allowed, the demand of a given period cannot be delivered earlier than the period, but can be delivered later at the expense of a backordering cost. Like most mathematical models, the classical dynamic lot-sizing model is a simplified paraphrase of what might actually happen in real life. In most real life applications, the customer offers a grace period - we call it a demand time window - during which a particular demand can be satisfied with no penalty. That is, in association with each demand, the customer specifies an earliest and a latest delivery time. The time interval characterized by the earliest and latest delivery dates of a demand represents the corresponding time window. This paper studies the dynamic lot-sizing problem with demand time windows and provides polynomial time algorithms for computing its solution. If shortages are not allowed, the complexity of the pro

    Carrier portfolio management for shipping seasonal products

    Get PDF
    Many seasonal products are transported via ocean carriers from origin to destination markets. The shipments arriving earlier in the market may sell at higher prices, but faster shipping services can be costly. In this paper, we study a newsvendor-type shipper who transports and sells seasonal products to an overseas market, where the selling price declines over time. A set of vessels with different schedules and freight rates are available to choose from. Our analysis demonstrates that a portfolio of vessels has two distinct effects on mitigating uncertainties in both demand and vessels' arrival schedules, while these two portfolio effects have been previously understood as separate issues in the literature. To find the optimal portfolio in our problem,we first show that when vessels arrive in a deterministic sequence, the optimal portfolio can either be derived in closed form (in the single-demand setting) or computed efficiently with a variation of the shortest-path algorithm (in the multi-demand setting). Then, based on these results, we propose an approximation procedure to address the general problem with an uncertain arrival sequence. In each iteration of the procedure, we only need to minimize a cost function approximated by a deterministic arrival schedule and the portfolio generated can converge to the optimal one under mild conditions. Finally, we present a real-world case studyto demonstrate several practical implications of managing a carrier portfolio

    Lysosomal membrane permeabilization is involved in oxidative stress-induced apoptotic cell death in LAMP2-deficient iPSCs-derived cerebral cortical neurons

    Get PDF
    Patients with Danon disease may suffer from severe cardiomyopathy, skeletal muscle dysfunction as well as varying degrees of mental retardation, in which the primary deficiency of lysosomal membrane-associated protein-2 (LAMP2) is considerably associated. Owing to the scarcity of human neurons, the pathological role of LAMP2 deficiency in neural injury of humans remains largely elusive. However, the application of induced pluripotent stem cells (iPSCs) may shed light on overcoming such scarcity. In this study, we obtained iPSCs derived from a patient carrying a mutated LAMP2 gene that is associated with Danon disease. By differentiating such LAMP2-deficient iPSCs into cerebral cortical neurons and with the aid of various biochemical assays, we demonstrated that the LAMP2-deficient neurons are more susceptible to mild oxidative stress-induced injury. The data from MTT assay and apoptotic analysis demonstrated that there was no notable difference in cellular viability between the normal and LAMP2-deficient neurons under non-stressed condition. When exposed to mild oxidative stress (10 μM H2O2), the LAMP2-deficient neurons exhibited a significant increase in apoptosis. Surprisingly, we did not observe any aberrant accumulation of autophagic materials in the LAMP2-deficient neurons under such stress condition. Our results from cellular fractionation and inhibitor blockade experiments further revealed that oxidative stress-induced apoptosis in the LAMP2-deficient cortical neurons was caused by increased abundance of cytosolic cathepsin L. These results suggest the involvement of lysosomal membrane permeabilization in the LAMP2 deficiency associated neural injury

    Glass-Forming Substances and Systems

    No full text
    corecore