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Many seasonal products are transported via ocean carriers from origin to destination markets. The ship-

ments arriving earlier in the market may sell at higher prices, but faster shipping services can be costly. In

this paper, we study a newsvendor-type shipper who transports and sells seasonal products to an overseas

market, where the selling price declines over time. A set of vessels with different schedules and freight rates

are available to choose from. Our analysis demonstrates that a portfolio of vessels has two distinct effects on

mitigating uncertainties in both demand and vessels’ arrival schedules, while these two portfolio effects have

been previously understood as separate issues in the literature. To find the optimal portfolio in our problem,

we first show that when vessels arrive in a deterministic sequence, the optimal portfolio can either be derived

in closed form (in the single-demand setting) or computed efficiently with a variation of the shortest-path

algorithm (in the multi-demand setting). Then, based on these results, we propose an approximation proce-

dure to address the general problem with an uncertain arrival sequence. In each iteration of the procedure,

we only need to minimize a cost function approximated by a deterministic arrival schedule and the portfolio

generated can converge to the optimal one under mild conditions. Finally, we present a real-world case study

to demonstrate several practical implications of managing a carrier portfolio.

Key words : ocean transport; diversification; carrier portfolio; newsvendor problem.

1. Introduction

Exporters of seasonal products often face the dilemma of choosing from various ocean shipping

services. In reality, shipping services between the same set of origin and destination may differ

significantly in the transit time and freight rate due to carriers’ different network structures and

steaming strategies. For instance, Van de Weijer (2013) reports that among shipping services from
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Manila to Rotterdam in 2011, the fastest service required an average transit time of 28.4 days,

whereas the average transit time of the slowest service was more than 40 days. Impressively, the

slow service costs only half as much as the fast one.

Delivery speed is clearly an important consideration, for example, for fruit exporters. Zespri

International Ltd., a New Zealand exporter, delivers fruit to overseas markets via ocean container

transport. Their transport-division chief once commented that “getting volumes of the fruit to their

destination within the first two weeks of picking is paramount to Zespri ensuring and maintaining

its global market share”(Mechelen 2011). On the one hand, the wholesale price in the fruit market

depends on a fruit’s degree of freshness/deterioration (Agricultural Marketing Service 2012). On

the other hand, given a fruit’s short lifetime, late delivery will leave downstream retailers less time

to make sales. Thus, fruit exporters must often compensate their customers for the opportunity

cost resulting from late arrivals. Hence, the selling season from the exporter’s perspective is even

shorter than the actual lifetime of a fruit. Moreover, a fruit usually has a fixed harvest time. Once

the kiwifruit in New Zealand ripens in early May each year, they must be picked as soon as possible,

then stored and sent to the distributors in destination markets (e.g., Europe). This requirement

makes the speed-cost tradeoff especially critical for fruit exporters like Zespri: While chartered

vessels can sail faster than ocean liners and enable the company to sell the fruit at a premium

price in the early season, the transportation cost would be substantial and may outweigh the gains.

Recently, Zespri has started using a combination of chartered vessels and slow but cheaper ocean

liners (Zespri 2014, p. 16), even though shipments in the latter may arrive late.

The risks confronting fruit exporters are twofold. First, due to the long lead time for ocean

transport, fruit exporters must make shipping decisions long before demand uncertainty is resolved.

For instance, the fruit from New Zealand, after being loaded on board, would spend 4 to 6 weeks

at sea before arriving at the Port of Rotterdam. Second, ocean shipping services are notoriously

unreliable. For instance, in 2014, severe congestion at the Port of Manila resulted in an average

vessel delay of more than five days (Lavigne 2014). Given these uncertainties, it remains unclear

how exporters should select from potential vessels with different freight rates and (departure and

arrival) schedules, in order to balance the trade-off between speed and cost. What are the benefits

for a shipper of using a portfolio of shipping services?

This paper will address the above issues and uncover the potential benefits of using a carrier

portfolio. We develop a newsvendor-type model in which a shipper delivers a type of seasonal

product to an overseas destination market via ocean carriers. The market value of the product

declines over time. Given a set of potential vessels with different schedules and freight rates, the

shipper decides which vessel(s) to use and the shipping volume to be assigned to each of the selected

vessels in the presence of both demand and arrival schedule uncertainties.
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By explicitly solving a special case with two candidate vessels and a single demand that can be

filled once shipments arrive, we show that a portfolio of shipping services has two distinct effects

on mitigating uncertainties in both demand and arrival times. First, a combination of fast and slow

services can be used to manage demand uncertainty. The fast service brings a high profit margin,

whereas the slow one contributes to a high service level throughout the entire season. Interestingly,

each shipping service may be viewed as a supply option contract studied in Mart́ınez-de Albéniz

and Simchi-Levi (2005, 2009) with a reservation cost and a random execution profit arising from

the uncertain arrival schedule. Second, when vessels arrive in an uncertain sequence, splitting

shipments between vessels can also help spread the risk from unreliable service schedules. This

diversification effect mirrors that studied in the supply risk literature (e.g. Anupindi and Akella

1993, Dada et al. 2007) in which multiple suppliers are sourced to mitigate uncertain supply. In

some sense, our shipping procurement provides a unified view of newsvendor problems with supply

option contracts and supply diversification. While the above two portfolio effects are treated as

separate issues in the inventory literature, in the shipping practice they occur concurrently. Yet, to

our knowledge, there are no existing models/applications in which these two effects are combined.

Besides the two portfolio effects, with multiple demands occurring over time, using vessels with

late departures may also help manage the inventory costs incurred at the origin and the destina-

tion. Our shipping problem combines all these features. Little is known about how to determine

the optimal procurement strategy when all these portfolio effects coexist. We start our analysis

by assuming that vessels arrive in a deterministic sequence. Under this assumption, the optimal

portfolio can either be derived in a closed form with an efficient-frontier characterization (in the

single-demand setting), or computed in polynomial time with a variation of shortest-path algo-

rithms (in the multi-demand setting). Based on these results, we propose an iterative approximation

procedure to solve the general model with an uncertain arrival sequence. Our solution approach,

partly built on several seminal papers such as Mart́ınez-de Albéniz and Simchi-Levi (2005), Fu

et al. (2010) and Cheung and Powell (2000), is able to asymptotically generate the optimal portfolio

under mild conditions. Finally, we present a numerical study based on the Zespri case.

Our contributions include (1) developing a newsvendor model motivated by a new application

in the ocean shipping industry, (2) demonstrating that our application combines two portfolio

effects which have been previously known as separate issues, (3) analyzing and solving the model

by extending existing results in the literature, and (4) conducting a real-world case study to

demonstrate the practical implications of our model.

The rest of this paper is organized as follows. We review related literature in Section 2, and

analyze a special case with only two shipping services in Section 4 in order to demonstrate the two

effects of a carrier portfolio. In Section 5, we propose solution approaches to the general problem.
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Section 6 presents the case study and Section 7 discusses several extensions. Finally, Section 8

concludes.

2. Literature Review

In the literature on maritime logistics, Wan and Levary (1995) develop a method for the shipper

to negotiate the freight rate with the shipping companies. Lim et al. (2008) study the shipper’s

procurement problem in which the shipper faces seasonally varying demands and must comply

with the volume guarantees given in the shipping contract. In their model, the shipper manages a

network of shipping lanes, but the demand on each lane is known. For inland transportation, Van de

Weijer (2013) studies an inbound supply chain of a distribution center in the hinterland. Based

on an inventory model, they simulate the effects of hinterland modal split on the transport and

inventory costs. Sharypova et al. (2012) develop an analytical model to address the coordination

problem between the shipper and inland terminals. They identify a trade-off between variable

transportation costs and inventory holding cost in the hinterland supply chain system.

As mentioned earlier, our shipping problem is related to two streams of literature on newsvendor

procurement. First, the portfolio effect with respect to demand uncertainty mirrors that studied in

Mart́ınez-de Albéniz and Simchi-Levi (2005, 2009). The relations between our model and theirs will

be detailed in Section 4. Second, the effect on mitigating uncertain arrival schedules is related to

the large body of literature on supply diversification (e.g., Anupindi and Akella 1993, Tomlin 2006,

Dada et al. 2007, Federgruen and Yang 2008, 2009). Also see Tomlin and Wang (2010) and Snyder

et al. (2010) for comprehensive surveys. Most of the papers along this stream are concerned with

the supply uncertainty that leads to a shortage in the supply volume. In our shipping problem,

however, delayed shipments will eventually be received but will have to be sold at a lower price,

depending on the length of delay. Anupindi and Akella (1993) consider a multi-period problem

where the undelivered quantity in the current period will be delivered one period later in their

Model III. Our model differs from theirs in that ours captures the trade-off between transit times

and freight rates, a major challenge faced by shippers in ocean transport.

Another stream of literature studies multi-period inventory control when multiple delivery modes

with deterministic lead times are available. Fukuda (1964) derives the optimal policies when the

lead times of two delivery modes differ by exactly one period. Whittemore and Saunders (1977)

consider the case where the lead times of two modes vary by an arbitrary number of periods. Feng

et al. (2006) further show that with multiple delivery modes base-stock policies are not optimal.

Motivated by the transport of short-lifetime products, we depart from the above papers by focusing

on a single selling season which is divided into periods with markdowns. Moreover, uncertain arrival

times are considered in our model.
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For stochastic lead times, pioneering papers like Kaplan (1970) and Zipkin (1986) focus on

characterizing optimal policies under sole sourcing. Ramasesh et al. (1991, 1993) and Kouvelis

and Li (2008) study dual sourcing strategies with uncertain lead times when demand arrives at

a constant rate. Under both demand and lead time uncertainty, existing papers rely mostly on

numerical simulations (e.g. Lau and Zhao 1993, Sedarage et al. 1999).

3. The Model

We consider a shipper selling a single type of seasonal product (e.g., fruit) to overseas customers

(e.g., distributors and wholesalers in the destination wholesale market). The product is transported

from the origin to the destination market via ocean carriers.

The production completes and the product is ready to ship at a given time point, which will

be referred to as the “harvest time” or time 0. In the Zespri example, fruit is harvested at this

harvest time each year. The selling season in the destination market begins at time t0. During

this season, the selling price of the product declines over time. We divide the season into N + 1

time periods, as illustrated in Figure 1. Let p(t) denote the market price in time period t, where

t=1,2, ...,N+1. Period N+1 represents the salvage period with price p(N+1). The price schedule

p(t) is exogenously given and (weakly) decreasing in t. Without loss of generality, we assume that

each period lasts one time unit (e.g., one day) and N is large enough to accommodate delayed

shipments. That is, period t refers to time segment [t0 + t− 1, t0 + t) for t=1,2, ...,N +1.

In the destination market, demand in period t (t= 1,2, ...,N) is random, denoted by d(t). All

leftover product can be salvaged in period N + 1. The d(t)’s need not be independent and their

distributions may depend on the prices p(1), p(2), ..., p(N) as well as the quality of the product in

period t. In this paper, however, we do not postulate any specific relation between demand and price

but assume that they are exogenously given. For convenience, let D(t) =
∑t

k=1 d(k), representing

the total demand up to period t. D(t) has a cumulative distribution function (cdf) Ft(x). Let

F̄t(x) = 1− Ft(x) and ft(x) denote the probability density function of D(t). Unsatisfied demand

in each period is backlogged, and can be filled in future periods but at a lower price depending on

the actual arrival time. An orange exporter revealed in an interview that its customers normally

accept late shipments but the selling price is adjusted according to the actual arrival time as a

compensation for arriving late.

There are M potential vessels offering shipping services from the origin to the destination. For

i = 1,2, ...,M , vessel i has a given departure time si, and will charge the shipper a freight rate

ri for each unit shipment.1 For notational brevity, we discretize vessels’ arrival times as follows.

Vessel i will arrive at the beginning of period Ti (or equivalently, at time t0+Ti−1), where Ti is a

discrete random variable with support {1,2, ...,N +1}. The transit time of vessel i is hence given
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Figure 1 Timeline and market markdown

by t0+Ti−1− si. The cdf of Ti is denoted by Gi, and the Ti’s need not be independent. In reality,

the arrival times of different vessels are often correlated. For example, vessels arriving at the same

port terminal will experience the same port congestion (if any). Since this paper focuses on ocean

shipping which usually takes a much longer time than inland transporation, we assume that the

time taken for inland distribution is constant and hence can be normalized to zero. Consequently,

shipments are available for sales immediately after arrival.

Without loss of generality, we assume that E[T1]≤E[T2]≤ ...≤E[TM ], i.e., vessels are indexed

in accordance with their expected arrival sequence. However, the freight rate ri is not necessarily

decreasing in i.2 Among the M vessels in the model, some may belong to the same shipping service

but depart at different times. Ocean carriers in reality usually provide weekly service schedules.

For example, if the decision maker wants to take into consideration two possible departure times

of a weekly shipping service, given that one period equals one day, we can treat these two options

as vessels i and j with sj = si+7, E[Tj ] =E[Ti]+7 and ri = rj. Vessel j is then said to have a late

departure.

The fruit is procured from growers at harvest time, and hence the shipper starts paying the

inventory cost for each unit of product from time 0. Let hO denote the inventory holding cost

per period at the origin, including not only the capital cost but also the cost of maintaining a

proper temperature in the warehouse. Let hB
i be the holding cost rate on board a vessel, which

may be vessel-dependent, as the difficulty in controlling the storage temperature for fruits often

differs among chartered vessels and ocean liners. In the general model, we allow the shipper to hold

leftover inventory at the destination to fulfill the demand in later periods. We denote by hD the

cost of holding one unit of product at the destination, which is incurred at the end of each period
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Let qi denote the quantity that the shipper decides to ship via vessel i. Then, the shipper’s

problem is to determine the allocation q= (q1, q2, ..., qM ) in order to maximize the expected profit.

As we are considering a single type of product and they are all purchased at harvest time, the unit

procurement cost can, without loss of generality, be normalized to zero. Because ocean transport

takes time, shipments are usually initiated long (e.g., 5-6 weeks) before the sale begins. As a

result, the shipper is uncertain about the d(t)’s at the time of decision making, even though some

vessels have late departure times. That is, our framework is an offline decision model in which we

implicitly assume that the benefit of waiting for updated demand information with late departures

is negligible. This is a reasonable assumption/approximation when the transit time is long compared

to the lifetime of the product, as in the case of ocean shipping considered in this paper. In other

cases (e.g., air freight transport), however, an online decision process would be a better fit.

Given q, the shipper’s income during period 1 includes the revenue at price p(1) minus the cost

of holding leftover inventory, which can be written as

p(1)min{d(1),
M
∑

i=1

qiI(Ti = 1)}−hD[
M
∑

i=1

qiI(Ti = 1)− d(1)]+

=p(1)d(1)− p(1)[d(1)−
M
∑

i=1

qiI(Ti = 1)]+ −hD[
M
∑

i=1

qiI(Ti = 1)− d(1)]+,

where (x)+ = max{x,0} and I(·) is an indicator function. The term
∑M

i=1 qiI(Ti = 1) represents

the quantity that has arrived in period 1. The above equality follows by invoking the relation

min{x, y}= x− (x− y)+.

In period 2, the accumulated demand is given by [d(1)−
∑M

i=1 qiI(Ti =1)]++d(2), and the total

available inventory equals [
∑M

i=1 qiI(Ti = 1)− d(1)]+ +
∑M

i=1 qiI(Ti = 2). The shipper’s income in

the second period can then be written as

p(2)min{[d(1)−
M
∑

i=1

qiI(Ti =1)]+ + d(2), [
M
∑

i=1

qiI(Ti = 1)− d(1)]++
M
∑

i=1

qiI(Ti =2)}

−hD[
M
∑

i=1

qiI(Ti ≤ 2)−D(2)]+

=p(2)d(2)+ p(2)[d(1)−
M
∑

i=1

qiI(Ti =1)]+ − p(2)[D(2)−
M
∑

i=1

qiI(Ti ≤ 2)]+−hD[
M
∑

i=1

qiI(Ti ≤ 2)−D(2)]+

Accordingly, the income in period t can be expressed as

p(t)d(t)+p(t)[D(t−1)−
M
∑

i=1

qiI(Ti ≤ t−1)]+−p(t)[D(t)−
M
∑

i=1

qiI(Ti ≤ t)]+−hD[
M
∑

i=1

qiI(Ti ≤ t)−D(t)]+.
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In period N + 1, both the overage quantity and the quantity arriving after period N will be

salvaged. The shipper thus obtains

p(N +1){[
M
∑

i=1

qiI(Ti ≤N)−D(N)]++
M
∑

i=1

qiI(Ti =N +1)}

=p(N +1)[D(N)−
M
∑

i=1

qiI(Ti ≤N)]+ − p(N +1)D(N)− p(N +1)
M
∑

i=1

qi,

where we have used the relation (x− y)+ = (y−x)+− (y−x).

Summing these N + 1 terms yields the total profit collected in the destination market, which

equals
∑N

t=1(p(t) − p(N +1))d(t) −
∑N

t=1 b(t)[D(t) −
∑M

i=1 qiI(Ti ≤ t)]+ − hD[
∑M

i=1 qiI(Ti ≤ t) −

D(t)]+− p(N +1)
∑M

i=1 qi, where we define b(t) = p(t)− p(t+1) for t= 1,2, ...,N . The first term is

irrelevant to the optimization and can be omitted. In addition to the shipping cost and the inven-

tory cost incurred before arrivals, the shipper’s objective is to minimize the following expected cost

function.

Problem (1): min
q≥0

H(q) =
N
∑

t=1

{

b(t)E[D(t)−
M
∑

i=1

qiI(Ti ≤ t)]+ +hDE[
M
∑

i=1

qiI(Ti ≤ t)−D(t)]+

}

+
M
∑

i=1

ciqi,

(1)

where we define

ci = ri + sih
O +(t0 +E[Ti]− 1− si)h

B − p(N +1).

When one unit of shipment is assigned to vessel i, the shipper will incur a shipping cost ri, an

inventory holding cost sih
O at the origin, as well as the expected pipeline inventory cost hB(t0 +

E[Ti]− 1− si). We will henceforth refer to ci as the full variable cost of vessel i. As in the classical

newsvendor problem, we assume that ci > 0 for all i’s to rule out the trivial case in which the

shipper would ship as much as possible.

Finally, the framework proposed here in general applies to two different scenarios, depending on

who, the shipper or local distributors, is managing the downstream inventory.

Single-Demand Model. While holding inventory at the destination is allowed in the general

framework, in some cases the shipper may not have any warehouse at the destination. Instead,

local distributors would purchase the product at the beginning of the season and then manage the

inventory themselves. To model this scenario, we assume that all customers will place their orders

in period 1; as before, unsatisfied demand can be filled in future periods by later shipments, but

the selling price is discounted according to the actual arrival time. Then, the total demand over the

entire season can be modeled as a single random variable, denoted by D, which is realized in period

1. That is, d(1) =D and d(t) = 0 for t≥ 2 (or equivalently, D(t) =D for all t= 1,2, ...,N). Since
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there is no demand late in the season, when D is fully satisfied, excess shipments will simply be

salvaged after arrival. This is equivalent to setting hD = 0. This scenario corresponds to a special

case of our general framework in which D(t) =D for all t= 1,2, ...,N and hD = 0. We will refer to

this case as the single-demand model. In related discussions, we will denote the cdf of D by F (x)

and define F̄ (x) = 1−F (x).

Multi-Demand Model. If the shipper has a warehouse at the destination, customers may

purchase the product at any time throughout the season as modeled in our general framework. We

will refer to this case as the multi-demand model. Note that it is often cheaper to hold inventory

at the origin than in the overseas market (i.e., hB <hD), as the warehouse is often well-established

at the origin where the shipper can enjoy economies of scales. In the multi-demand model, conse-

quently, it becomes especially important to take into account different departure times of the same

shipping service, as late departures may be preferred in order to properly allocate the inventory

costs incurred at the origin and the destination.

4. The Single-Demand Model with M =2

We start by analyzing the single-demand model with M = 2. From this special case, we will demon-

strate that Problem (1) combines two classes of newsvendor models in the literature.

With D(t) =D for all t and hD = 0, and Problem (1) can be written as

min
q≥0

H(q) =
N
∑

t=1

{

b(t)E[D−

2
∑

i=1

qiI(Ti ≤ t)]+

}

+
2

∑

i=1

ciqi. (2)

If both T1 and T2 are deterministic with T1 <T2, (2) can be simplified as

min
q≥0

H(q) = (p(1)−p(T1))E[D]+(p(T1)−p(T2))E[D−q1]
++(p(T2)−p(N+1))E[D−(q1+q2)]

++
2

∑

i=1

ciqi.

(3)

Let us then express the expected markdown loss as the objective value of a linear program. H(q)

can then be rewritten as

H(q) =
2

∑

i=1

ciqi+E















min
∑2

i=1wixi + sxs

s.t. 0≤ xi ≤ qi, ∀i
∑2

i=1 xi +xs =D
0≤ xs.















, (4)

where w1 = p(1)− p(T1), w2 = p(1)− p(T2) and s= p(1)− p(N +1).

Note that by assuming that both Ti are deterministic, we have reduced Problem (1) to a formu-

lation equivalent to that studied in the option contract procurement literature (see, for example,

Section 5 of Mart́ınez-de Albéniz and Simchi-Levi (2005) and Section 4 of Mart́ınez-de Albéniz

and Simchi-Levi (2009)). In that stream of literature, wi is referred to as the execution cost of
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option contract i and s is regarded as the opportunity cost due to lost sales or a constant spot

market price. qi is the reservation capacity for option i, which must be determined before demand

is realized. One can think of each vessel as a supply option contract: ci is the reservation cost for

option contract i; the resulting selling price p(Ti) is the marginal profit that can potentially be

obtained by executing option contract i. Our shipping problem with deterministic arrival times

can then be interpreted as a supply option contract procurement problem with w1 ≤w2 ≤ s. The

inner linear program of (4) can then be solved in a greedy fashion: Given realized demand D, we

should clearly execute option 1 first, and then execute option 2, until D is fully filled. This leads

exactly to the expected markdown loss expressed in (3).

Due to uncertain arrival times, a critical characteristic of ocean transport, our shipping problem

departs from the existing option contract procurement models in that unreliable service schedules

result in random execution costs wi. To our knowledge, this portfolio selection problem with random

reservation profits/costs has not been addressed in the literature. One relevant paper is Fu et al.

(2010) in which the authors study how to deal with a random spot price s while assuming the wi’s

are deterministic.

Now assume that in (2), both T1 and T2 are generally random but N =1. In this case, shipments

will be sold either at the full price p(1) or at the salvage value p(2), depending on whether the

arrival is delayed to the salvage period. Our model then coincides with the supply diversification

(e.g., Anupindi and Akella 1993, Federgruen and Yang 2008) problem with 0-1 random yield. With

probability Gi(t1), shipments via vessel i can sell at the full price; with probability 1−Gi(t1), they

will miss the full-price sales window and must be salvaged.

In our shipping context, the shipper can still receive a partial profit margin if the delay is not too

extreme, permitting a trade-off between speed and markdown loss. Hence, our model with N ≤ 2

departs from the supply diversification literature by further specifying the length of delivery time

and its impact on the shipper’s cost, thus incorporating the speed-cost trade-off. 3

To summarize, we have shown that our shipping problem can be reduced to two classes of

newsvendor models from different perspectives. These two classes have been studied separately in

the literature, and it appears that there are no models/applications in which they are combined.

4.1. Deterministic Arrival Sequence

Let us first consider a special case in which Pr{T1 ≤ T2} = 1, i.e., the vessels arrive according

to a deterministic sequence. Theorem 1 characterizes the structure of the optimal solution under

the assumption of a deterministic arrival sequence, suggesting that despite uncertainties in arrival

times, one can simply replace random prices p(T1) and p(T2) with their expectations if Pr{T1 ≤

T2} = 1 and the structure of our problem therefore mirrors that of the supply option contract

problem studied in the literature. All proofs in this paper are presented in Appendix EC.1.
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Theorem 1. Suppose Pr{T1 ≤ T2} = 1. The optimal solution q∗ to (2) is given by one of the

following cases:

(i) If ci ≥E[p(Ti)]− p(N +1) for both i= 1,2, q∗ = (0,0), i.e., it is optimal to ship nothing.

(ii) If c1
E[p(T1)]−pN+1

≤ c2
E[T2]−p(N+1)

and c1 < E[p(T1)] − p(N +1), then q∗ = (qs1,0) where qs1 =

F̄−1( c1
E[p(T1)]−p(N+1)

).

(iii) If E[p(T1)]− c1 ≤ Ẽ[p(T2)]− c2 and c2 <E[p(T2)]− p(N +1), then q∗ = (0, qs2) where qs2 =

F̄−1( c2
E[p(T2)]−p(N+1)

).

(iv) If

E[p(T1)]− c1 >E[p(T2)]− c2, and (5)

c1
E[p(T1)]− p(N +1)

>
c2

E[p(T2)]− p(N +1)
, (6)

then the diversification solution (qd1 , q
d
2) is optimal, where qd1 = F̄−1( c1−c2

E[p(T1)]−E[p(T2)]
) and qd2 =

F̄−1( c2
E[p(T2)]−p(N+1)

)− qd1 .

O

( IV )

( III )

( II ) A

B C

D

45-degree line

( I ):   Shipping nothing

( II ):  Using vessel 1

( III ): Using vessel 2

( IV ): Diversification

( I )

1 2[ ( )] [ ( )]E p T E p T-
1[ ( )] ( 1)E p T p N- +

1c

2c

2[ ( )] ( 1)E p T p N- +

Figure 2 Optimal shipping strategies in the single-demand model with M = 2 and Pr{T1 ≤ T2}=1

In Theorem 1, all possible combinations of nonnegative variable costs c1 and c2 are segmented into

four regions according to the conditions in cases (i)-(iv). The segmentation is illustrated in Figure

2. In region (I), full variable costs are too high for both vessels such that the shipper would ship

nothing. In regions (II) and (III), choosing only one vessel is optimal since one vessel is significantly

cheaper than the other, where qsi denotes the shipping quantity when the shipper exclusively uses
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Figure 3 Graphic explanation of Theorem 1

vessel i. In region (IV) where parameters satisfy inequalities (5) and (6), the shipper should use

both vessels, where qdi denotes the shipping quantity assigned to vessel i.

As in the supply option contract problem where the buyer may need to maintain a portfolio of

option contracts, the shipper uses a combination of different shipping modes to manage demand

uncertainty. Inequality (5) clearly implies that vessel 1 generates a higher marginal profit than

vessel 2. To interpret inequality (6), note that when the shipper exclusively uses vessel i, the

solution is determined by F̄ (qsi ) =
ci

E[p(Ti)]−p(N+1)
, as in the classical newsvendor problem. That is,

inequality (6) implies that vessel 2, if used exclusively, will lead to a higher (type 1) service level

than vessel 1. A graphic explanation is given in Figure 3. Diversification is optimal if the fast

vessel provides a higher marginal profit and the slow one yields a higher service level. The early

arrival enables shipments to be sold at a premium, whereas the shipments arriving late contribute

to fulfilling more demand in a probabilistic sense.

Corollary 1. The optimal shipping quantities in Theorem 1 have the following properties:

(i) qd1 + qd2 = qs2, i.e., the total shipping quantity with diversification depends only on the param-

eters of the slow vessel.

(ii) If D̂ is a mean-preserving spread of D, then the corresponding solutions satisfy qd2 ≤ q̂d2 ,

|qd1 −µD| ≤ |q̂d1 −µD| and |qd1 +qd2 −µD| ≤ |q̂d1 + q̂d2 −µD|. In particular, as Var(D)→ 0, qd1 → µD and

qd2 → 0.

(iii) Suppose hB
1 = hB

2 = hB. If service i (i = 1 or 2) has a shorter transit time, then qdi is

increasing in hB, whereas qd3−i is decreasing in hB.

Part (i) of Corollary 1 states that when it is optimal to diversify shipments, the shipper should

order up to the same level as it does when only using the slow vessel, but assign a portion of
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shipments to the fast vessel in order to enjoy a higher profit margin. Part (ii) of Corollary 1 reveals

the effect of demand variability on shipping strategies. The quantity shipped via the slow vessel

is increasing in demand variability, whereas the quantity shipped via the fast vessel and the total

quantity will approach the mean of demand as demand variability decreases. In the extreme case

where demand is known accurately, it boils down to a simple principle: Select the vessel that would

give the highest profit for every unit of shipments. However, when demand uncertainty exists, the

cheaper but slower vessel may be used as a buffer against demand variability. Part (iii) of Corollary

1 reflects the intuitive trade-off between the pipeline inventory cost and the shipping cost. When

holding pipeline inventory is more expensive, a larger portion of shipments should be assigned to

the fast vessel.

4.2. Uncertain Arrival Sequence

The preceding discussion has relied on the assumption that T1 ≤ T2 with probability 1, which

excludes another portfolio effect with respect to the shipping schedule reliability. Theorem 2

presents the structure of optimal shipping strategies when this assumption is relaxed.

Theorem 2. For i= 1,2, the optimal solution to (2) is characterized as follows:

(i) If ci ≥
∑N

t=1 b(t)Gi(t) for both i= 1,2, then q∗ = (0,0), i.e., it is optimal to ship nothing;

(ii) For i = 1,2, if c3−i −
∑N

t=1 b(t)Pr{Ti≤t,T3−i≤t}
∑N

t=1 b(t)Gi(t)
ci −

∑N

t=1 b(t)Pr{Ti > t,T3−i ≤ t} ≥ 0 and ci <
∑N

t=1 b(t)Gi(t), then q∗i = qsi , q
∗
3−i =0, where qsi is determined by

F̄ (qsi ) =
ci

∑N

t=1 b(t)Gi(t)
; (7)

(iii) Otherwise, q∗ = (qd1 , q
d
2), which is obtained by solving the following equations:

ci =F̄ (qd1 + qd2)
N
∑

t=1

b(t)Pr{Ti ≤ t, T3−i ≤ t}

+ F̄ (qdi )
N
∑

t=1

b(t)Pr{Ti ≤ t, T3−i > t}, for i=1,2.

(8)

The structure of the optimal solution is illustrated in Figure 4, which mirrors some existing results

in the supply risk diversification literature.4 Compared with Figure 2, the region for diversification

is enlarged from a triangle to a quadrangle, as the shipper in this case also needs to diversify its

shipments in order to mitigate the delay risk.

One may also view each vessel as an option contract. When vessels arrive in a random order,

p(T1) may be either higher or lower than p(T2). Just like investing in a portfolio of assets with

random returns, when deciding on the shipping/reservation quantities, the shipper can use multiple

vessels/option contracts to control the volatility of their execution profits. Therefore, we conclude



Lu, Fransoo and Lee: Carrier Portfolio Management

14 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

O B C

A
D

E

1 2

1

(t)Pr{ , }
N

t

b T t T t
=

£ >å

1 2

1

(t)Pr{ , }
N

t

b T t T t
=

> £å

2

1

( ) ( )
N

t

b t G t
=

å

1

1

( ) ( )
N

t

b t G t
=

å

2c

1c

Figure 4 Optimal shipping strategies in the single-demand model with M = 2

that in the shipping context, the benefits of using multiple vessels are twofold: Managing demand

uncertainty via diversifying the timing of sales, and mitigating the delay risk via splitting shipments

among vessels.

Remark 1. We are now able to position our shipping problem (1) in the extensive literature on

the newsvendor procurement. Problem (1) provides a unified view of the procurement problem

with supply risk diversification and supply option contracts in the sense that it generalizes the

supply diversification problem with 0-1 yield from the perspective of shipping reliability, and the

supply option contract selection from the perspective of managing demand uncertainty.

4.3. Diversification with Similar or Different Services?

In this subsection, we provide a numerical example to examine the interplay between the two

portfolio effects. For simplicity, let t0 = 0 (i.e., demand at the destination begins accruing at time

0), and N = 14, p(t) = 61− 30
7
(t−1) for t=1,2, ...,N+1, hO = hB

i =0.1 for all i. D follows a gamma

distribution with a mean µD =100, whose coefficient of variation is denoted by cvD. Consider four

vessels all departing at time 0. The distributions of Ti’s are constructed from normally distributed

random variables with means µT1 = µT2 = 6, µT3 = µT4 = 8.5 and the same coefficient of variation

cvT . The coefficient of correlation, denoted by ρ, is set to be identical among all underlying arrival

times. The first two fast vessels are associated with freight rates r1 = r2 = 20, whereas the other

two with r3 = r4 = 10.

The question is whether to choose similar arrival schedules or different ones. A portfolio of

vessels with different arrival schedules is preferred in order to tackle the demand-side uncertainty.

However, the diversification effect on mitigating delay risk is somewhat weakened, because the

arrival sequence is less likely to alter if the arrival schedules differ significantly. On the other hand,
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leveraging two similar arrival schedules strengthens the diversification effect on schedule reliability,

but would lessen the effect on demand uncertainty.

cvT
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(a) Effect of arrival time variability (ρ =

0.2)
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(b) Effect of arrival time correlation (cvT =
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Figure 5 Comparison of two-vessel portfolios

We compare the performances of two-vessel portfolios. Three possible strategies are possible: FF

(selecting both fast services), FS (selecting heterogeneous services), and SS (selecting both slow

services). With different pairs of cvD and cvT , the best strategies are shown in Figure 5a. When

cvT is small, using heterogeneous services is always the best strategy. FF outperfoms FS when

cvD is low but cvT is relatively high, since in this case spreading delay risk is of a higher priority.

Nevertheless, it should also be kept in mind that FS does spread some delay risk if the vessels’

arrival sequence can be altered. That is why the region for FF starts shrinking when cvT exceeds

0.2. When both demand and arrival times are highly volatile, SS becomes the best strategy. Figure

5b presents the results with different cvD and ρ. For a small ρ, it is more beneficial to use two

identical vessels to mitigate the delay risk when cvD is either small or extremely large. However,

FS becomes dominant gradually as ρ increases. Even though the correlation between arrival times

lessens the effect that diversification has on spreading the delay risk, the strategy FS remains

efficacious in dealing with demand uncertainty.

5. The General Case: M > 2

Despite the convexity of Problem (1), it remains difficult to solve because evaluating the expectation

over D(t) and the Ti’s involves many integrals, which are computationally demanding. In this

section, we address Problem (1) step by step. In Section 5.1, we analyze the special case where

vessels’ arrival sequence is deterministic. The appealing structure in this case allows us to derive the

optimal solution in a closed form (in the single-demand model) or numerically solve it in polynomial
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time (in the multi-demand model). In Section 5.2, we propose an iterative approximation procedure,

leveraging the results in Section 5.1, to address the general problem with an uncertain arrival

sequence.

5.1. Deterministic Arrival Sequence

In this subsection, we focus on a restrictive version of Problem (1) under the following assumption:

Assumption 1 (Deterministic Arrival Sequence). Pr{Ti ≤ Ti+1}= 1 for all i= 1,2, ...,M−1.

Assumption 1 is not entirely unrealistic. It is possible that all vessels are processed by the same

port terminal operator at the destination. If the terminal operator must follow a predetermined

service schedule according to the expected arrival times, Assumption 1 is then satisfied. Note that

Assumption 1 has excluded the diversification effect on mitigating uncertain arrival schedules.

5.1.1. The Single-Demand Model In Theorem 1 and the accompanying discussions, we

have identified a connection between our problem and the option contract procurement problem

whenM = 2. The following lemma extends this observation to the case whenM > 2, indicating that

uncertain arrivals affect the objective value only through the expected selling prices p̄i =E[p(Ti)]

as long as vessels’ arrival sequence is fixed.

Lemma 1. In the single-demand model, if Assumption 1 is satisfied, H(q) can be simplified to

H(q) = (p(1)− p̄1)E[D] +
M−1
∑

i=1

(p̄i− p̄i+1)E[D−

i
∑

j=1

qj]
+

+(p̄M − p(N +1))E[D−

M
∑

j=1

qj]
+ + ciqi,

(9)

where p̄i =E [p(Ti)] for all i.

In view of (9), determining q can be regarded as equivalent to deciding on the reservation

quantities of M supply option contracts where contract i, which corresponds to vessel i, has a

reservation cost ci and yields a random profit p(Ti) from executing one unit of the reservation.

Because under Assumption 1 we have p(T1)≥ p(T2)≥ ...≥ p(TM) with probability one, the priority

in executing these contracts is unambiguous. The shipper will first execute contract 1, and then

contract 2, and so on until D is fully satisfied. This special structure enables us to explicitly

characterize the optimal choice of q∗ that minimizes H(q).

We define

iA =arg max
1≤i≤M

{p̄i − ci}, (10)

iB = arg min
1≤i≤M

{
ci

p̄i − p(N +1)
}. (11)
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Hence, vessel iA generates the highest marginal profit, and vessel iB, if used exclusively, leads to

the highest service level. In case of multiple maxima or minima, iA and iB are then selected as the

lexicographically smallest.

We say vessel i is active if qi > 0. Let J be the set of active vessels. The set J can be found by

the following procedure.

Algorithm 1.

Step 0 Find iA and iB as defined in (10) and (11). Let J := {iB}. If iA = iB, stop; otherwise, go to

Step 1.

Step 1 j1 := argminiA≤j<iB
{

cj−ciB
p̄j−p̄iB

: p̄j − cj ≥ p̄iB − ciB}. Let J := J ∪ {j1}. If iA = j1, stop; other-

wise, go to step 2.

Step k (k=2,3, ...) jk := argminiA≤j<jk−1
{

cj−cjk−1

p̄j−p̄jk−1
: p̄j − cj ≥ p̄jk−1

− cjk−1
}. Let J := J ∪ {jk}. If

iA = jk, stop; otherwise, go to step (k+1).
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Figure 6 Illustration of the efficient frontier

Theorem 3. Let J = {iA, jk, ..., j1, iB} be the set generated by Algorithm 1. The optimal solution

q∗ to the single-demand model under Assumption 1 is determined as follows. q∗i = 0 whenever i /∈ J .

For i ∈ J ,

(i) If J = {iB}, then

q∗iB = F̄−1

(

ciB
p̄iB − p(N +1)

)

.

(ii) If J = {iA, iB}, then

q∗iA + q∗iB = F̄−1
(

ciB
p̄iB

−p(N+1)

)

,

q∗iA = F̄−1
(

ciA
−ciB

p̄iA
−p̄iB

)

.
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(iii) If J = {iA, jk, ..., j1, iB}, then

q∗iA +
jk
∑

i=j1

q∗i + q∗iB = F̄−1
(

ciB
p̄iB

−p(N+1)

)

,

q∗iA +
jk
∑

i=j1

q∗i = F̄−1
(

cj1
−ciB

p̄j1
−p̃iB

)

,

q∗iA +
jk
∑

i=jτ

q∗i = F̄−1
(

cjτ −cjτ−1

p̄jτ −p̄jτ−1

)

, for τ =2, ...k,

q∗iA = F̄−1
(

ciA
−cjk

p̄iA
−p̄jk

)

.

Algorithm 1 constructs an efficient frontier: Only the vessels on the frontier are assigned with

a positive volume of shipments, as illustrated in Figure 6. Once the set J = {iA, jk, ..., j1, iB} is

determined, q∗ can be derived in a closed form, as given in Theorem 3. The efficient frontier and

the solution structure mirrors the “lower convex envelope” property derived in the literature on

supply option contract procurement (e.g., Mart́ınez-de Albéniz and Simchi-Levi 2005, 2009). From

the perspective of option contract procurement, Theorem 3 extends existing results by allowing for

random execution profits/costs, indicating that the solution structure under deterministic execution

profits can be sustained as long as random execution profits are always realized in a certain order.

For our shipping application, this provides not only a building block for efficiently solving Problem

(1), but also qualitative guidance for selecting shipping lines. The structure of the efficient frontier

suggests that the shipper should try to obtain a high marginal profit via fast vessels, and meanwhile

maintain as high a service level as possible by diversifying with slow vessels. It is also interesting to

find that the overall order-up-to level is determined by ciB/(p̄iB − p(N +1)), which depends only

on vessel iB . That is, the slowest active vessel helps maintain an overall service level, while the

faster ones contribute to increasing profit margins.

Corollary 2. For J = {iA, jk, ..., j1, iB} generated by Algorithm 1, we have ciA ≥ cjk ... ≥ cj2 ≥

cj1 ≥ ciB .

Recall that different departures of every shipping line can be represented by different candidates

in our model. However, Corollary 2 states that in the optimal portfolio, a vessel expected to arrive

earlier would be associated with a higher variable cost, suggesting that we only need to consider

the earliest departure of each shipping line as a potential option. Vessels with late departures must

not be included in the optimal portfolio, since they arrive later but have larger ci.

5.1.2. The Multi-Demand Model We proceed to study the multi-demand model in which

the shipper may hold inventory at the destination at a holding cost rate hD and allow downstream

customers to order over time. As a result, contrary to Corollary 2 in the single-demand model, the

shipper may choose some late departures to reduce the high inventory costs at the destination.
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For ease of exposition, we define

L0 =ET [

T1−1
∑

t=1

b(t)D(t)],

Li(x) =ET [

Ti+1−1
∑

t=Ti

b(t)(D(t)−x)++hD(x−D(t))+] for i=1,2, ...,M.

(12)

One may interpret L0 as the expected markdown loss before the arrival of vessel 1, and Li(x) as

the expected markdown and inventory holding costs incurred between the arrivals of vessel i and

vessel i+1 if the total shipping quantity up to vessel i equals x. Then, under Assumption 1, H(q)

can be simplified as follows:

min
q≥0

H(q) =L0 +
M
∑

i=1

Li(
i

∑

j=1

qj)+
M
∑

i=1

ciqi. (13)

From the perspective of supply option procurement, the first term in (13) can be interpreted

as a generalized cost function for executing reserved quantities qi. One may think of Ti as the

default execution date associated with option contract i. Contract i can be executed only when

t≥ Ti. In every period t, as long as the cumulative demand D(t) has not been completely filled, the

shipper should execute the contracts available at period t and accrue a profit p(t) for each unit;

when D(t) is fully satisfied, the shipper should defer the execution where the inventory holding

cost hD may be viewed as a penalty for late execution. Note that this portfolio selection problem,

even with deterministic Ti, is a departure from the classical option contract problem in that the

multi-demand setting gives rise to another trade-off, i.e., that between the inventory holding costs

at the origin and the destination.

Let J = {j1, j2, ..., j|J|} denote the set of active vessels in the optimal solution. We first state the

first-order necessary optimality condition for q∗ in the following lemma.

Lemma 2. Suppose that J = {j1, j2, ..., j|J|} is the set of indices such that q∗i > 0 for i ∈ J and

q∗i = 0 for i /∈ J . Under Assumption 1, the value of q∗ must satisfy

(p̄jk − cjk)− (p̄jk+1
− cjk+1

) = E[

Tjk+1
−1

∑

t=Tjk

(b(t)+hD)Ft(
k

∑

v=1

q∗jv)] for k=1,2, ..., |J | − 1, (14)

p̄j|J|
− cj|J|

− p(N +1) = E[

N
∑

t=Tj|J|

(b(t)+hD)Ft(

|J|
∑

v=1

q∗jv )]. (15)

Once J is determined, q∗ can be computed according to Lemma 2. However, there are many

possible subsets of {1,2, ...,M} constituting a candidate solution. We need to identify the one that

generates the minimum cost. An attractive property of the shipping quantities is as follows: The
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cumulative quantity up to vessel jk is determined only by the parameters of vessels jk and jk+1;

the total quantity is determined only by the parameters of the last (i.e., slowest) vessel in the

portfolio. If we work with the cumulative quantities yi =
∑i

j=1 qj, then yi is nondecreasing in i.

Provided that J = {j1, j2, ..., j|J|}, the optimal cumulative quantities are given by y∗
jk
=

∑k

v=1 q
∗
jv

for all k= 1,2, ..., |J |. Note that y∗
jk

is strictly increasing in k. Accordingly, we rewrite the objective

function of (13) as

H(y) =L0 +
M
∑

i=1

Li(yi)+
M
∑

i=2

ci(yi− yi−1)+ c1y1

=L0 +
M−1
∑

i=1

{Li(yi)+ (ci− ci+1)yi}+ cMLM (yM)+ cMyM ,

where we have regrouped the terms such that the total cost can be written as a summation of terms

with respect to yi. Furthermore, given the optimal portfolio J = {j1, j2, ..., j|J|}, we have y∗
i = 0 for

all i < j1, y
∗
i = y∗

jk
for all jk ≤ i≤ jk+1 − 1 where k = 1,2, ..., |J | − 1, and y∗

i = y∗
j|J|

for all i ≥ j|J|.

The optimal value of the objective function is then reduced to

H(y∗) =L0 +w0,j1 +

|J|−1
∑

k=1

wjk ,jk+1
(y∗

jk
)+wj|J|,M+1(y

∗
j|J|

), (16)

where we define

w0,i =
i−1
∑

k=1

Lk(0) (17)

wi,j(y) =

j−1
∑

k=i

Lk(y)+ (ci− cj)y (18)

wi,M+1(y) =
M
∑

k=i

Lk(y)+ ciy (19)

In (16), the constant term L0 is irrelevant to the optimization and the other terms are expressed

by |J |+1 parts, enabling us to evaluate the cost incurred by activating one more vessel.

Consider a directed graph G = {V,E}. Let the set of vertices V = {O,1,2, ...,M,E}: Vertices

i = 1,2, ...,M denote M candidate vessels and two artificial vertices O and E are added as the

origin and end vertices. For edges, construct edge (i, j) by joining vertices i and j for any i, j such

that 1≤ i < j ≤M . Also, connect vertex O with all other vertices as edges (O, i) for all 1≤ i≤M

and (O,E), and connect each i=1, ...,M with the end vertex E as the edge (i,E). Associated with

each edge, there are two parameters yij and dij, keeping track of the aggregate quantity and costs

respectively. The parameters are defined below and Figure 7 gives an illustration of graph G.
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• For edge (i, j) where 1≤ i < j ≤M , let yij be the solution to

(p̄i − ci)− (p̄j − cj) =E[

Tj−1
∑

t=Ti

(b(t)+hD)Fk(yij)], (20)

and set yij = 0 if no solution exists. Let dij =wi,j(yij).

• For edge (O, i) where 1≤ i≤M , let yO,i = 0 and dO,i =w0,i.

• For edge (i,E) where 1≤ i≤M , let yi,E be the solution to

p̄i − ci− pN+1 =E[
N
∑

t=Ti

(b(t)+hD)Fk(yi,E)], (21)

and set yi,E = 0 if no solution exists. Let di,E =wi,M+1(yi,E).

• For edge (O,E), let yO,E =0 and dO,E =
∑M

i=1Li(0).

EO i j

, ,( , )O i O iy d

, ,( , )O j O jy d

, ,( , )O E O Ey d

( , )ij ijy d , ,( , )j E j Ey d

, ,( , )i E i Ey d

Figure 7 Illustration of graph G (1≤ i < j ≤M)

A path is called a monotone path in G if it starts from vertex O and ends at vertex E with yij

strictly increasing along the path. From Lemma 2, yij corresponds to the cumulative quantity if

vessels i and j are consecutive in J , and yi,E is the total quantity if vessel i is the last arriving vessel

in J . Thus, any feasible portfolio can be represented by a monotone path in G. On the other hand,

a path from O to E that passes |J | vessels contains |J |+ 1 edges. Note that the distances dij of

these edges correspond to the |J |+1 parts in (16). That is, the total distance of a monotone path

equals the expected cost (minus a constant L0) incurred by the corresponding solution. Therefore,

we have established the following theorem.

Theorem 4. Under Assumption 1, determining the set J is equivalent to finding the shortest

monotone path in G.

This variation of shortest-path problems can be solved by a modified shortest-path algorithm

which is detailed in Appendix EC.2. Given the parameters (yij, dij), the complexity of finding the

monotone shortest path is O(M 3). We therefore conclude that under Assumption 1, q∗ can also be

determined efficiently under multiple demands.
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Remark 2. The monotone shortest path algorithm is reminiscent of Fu et al. (2010) in which the

authors develop an algorithm to solve the option contract procurement problem described in (4)

when the spot market price s and demand D are interdependent random variables and execution

costs wi are deterministic. To some extent, our problem has a similar flavor: The cumulative

demandD(t) is correlated with selling price p(t) through time t. However, our multi-demand model

is different from that studied in Fu et al. (2010) in that multiple demands occur over time in

our model which leads to another trade-off between inventory holding costs at the origin and the

destination. Interestingly, despite the differences we have identified a similar property to that in

Fu et al. (2010), i.e., the cumulative order quantities are determined only by the two consecutively

active candidates in the portfolio and the total quantity depends only on the last active candidate,

which enables the portfolio selection to be converted into a variation of the shortest-path problem.

5.2. Uncertain Arrival Sequence

Having discussed the solution approaches under Assumption 1, we are ready to propose an iterative

approximation procedure to solve the general problem based on the findings in Section 5.1.

We first approximate the cost function by replacing random Ti’s with a fixed nominal arrival

schedule: T̂1 < T̂2 < ... < T̂M < T̂M+1 =N +1. Note that we require strict inequalities here for the

sake of convergence (as will be discussed later). One can simply set T̂i =E[Ti] if vessels’ expected

arrival times are distinct from each other.

As in (12), we define a set of functions to represent the costs incurred between the arrivals of

every two consecutive vessels except that the uncertain Ti’s are replaced by T̂i’s:

L̂0 =

T̂1
∑

t=1

b(t)D(t),

L̂i(x) =

T̂i+1−1
∑

t=T̂i

(

b(t)(D(t)−x)++hD(x−D(t))+
)

.

The approximate objective function, denoted by Ĥ0(q), is written as

Ĥ0(q) = L̂(q)+
M
∑

i=1

ciqi. (22)

where L̂(q) = L̂0 +
∑M

i=1 L̂i(
∑i

j=1 qj).

Clearly, to minimize Ĥ0(q) over q≥ 0, we can simply apply the results in Section 5.1. Let q0 be

the minimizer of this simple approximate problem. To improve the approximation, we can utilize

the linear term (∇H(q0) − ∇Ĥ(q0))Tq, which captures the difference between the gradients of

the actual cost function and its approximation at q0. Inspired by the stochastic gradient-based
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approximation, we can add this linear term multiplied by a proper stepsize/smoothing factor δ0

to the initial approximation. By doing so, we are in effect adjusting the original variable cost ci

to ci + δ0(∇qi
H(q0)−∇qi

Ĥ(q0)) while preserving the appealing structure of L̂(q). With a given

sequence of δk, we can continue this procedure to iteratively calibrate c. Furthermore, note that

conditioning on T , the gradient of the true cost function ∇H(q|T ) has a closed-form expression

and is thus easy to compute. Let T(i) denote the order statistics of T and (i) represent the index

of the i-th arriving vessel. We have

∇(i)H(q|T ) =
M
∑

k=i

T(k+1)−1
∑

t=T(k)

(

b(t)+hD
)

Ft(
k

∑

j=1

q(j))−
[

p(T(i))− p(N +1)
]

+ c(i).

With a set of independent random samples of arrival schedules, T (1),T (2), ...,T (Ns), we can use

1
Ns

∑Ns

s=1∇H(q|T (s)) as an estimator of ∇H(q) in each iteration where Ns can be any positive

integer. A minor point to note is that when using the stochastic gradient to calibrate c, the

updated variable cost may be so negative that the approximate problem becomes unbounded in

some iteration (although this has never occurred in any of our numerical tests). To avoid this, we

may introduce an artificial upper bound Q̄= (Q̄1, Q̄2, ..., Q̄M ) for q where the Q̄i’s are sufficiently

large numbers so that they will not affect the original optimal solution.5 The above discussion is

formalized in Algorithm 2 below.

Algorithm 2.

Step 0 Let c0 = c. Obtain q0 = argmin0≤q≤Q̄ Ĥ0(q) = L̂(q)+ (c0)Tq.

Step k (k=1,2,...) Generate Ns random (and independent) samples of arrival schedules,

T (1),T (2), ...,T (Ns), and set

ck = ck−1 + δk−1(
1

Ns

Ns
∑

s=1

∇H(qk−1|T (s))−∇Ĥk−1(qk−1)).

Obtain qk = argmin0≤q≤Q̄ Ĥk(q) = L̂(q)+ (ck)Tq. Go to Step k+1.

In general, Algorithm 2 falls into a class of stochastic approximation algorithms proposed by

Cheung and Powell (2000). In that paper, the authors propose a generic approximation procedure

intended for two-stage stochastic programs. However, they do not mention how to construct the

initial approximation based on specific problems. Here, our algorithm has fully exploited the special

structure given a deterministic arrival sequence in every iteration while calibrating the variable cost

with the gradient information. In each iteration, Ĥk(q) can be efficiently optimized by applying

the results in Section 5.1. The artificial upper bound Q̄i has little impact here because it is attained

only if limqi→∞∇iL(q)+ cki = (N − T̂i +1)hD + cki < 0. This can be easily checked beforehand.
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Theorem 5. If (i) for k = 1,2, ..., δk satisfies 0 < δk < 1,
∑∞

k=1 δk = ∞,
∑∞

k=1 δ
2
k < ∞, and (ii)

∑T̂i+1−1

t=T̂i
(b(t)+hD)ft(x)> 0 for all i= 1,2, ...,M and x∈ [0,

∑i

k=1 Q̄k], then the sequence of vectors

qk converges to an optimal solution q∗ almost surely.

Theorem 5 provides conditions under which Algorithm 2 will converge to an optimal solu-

tion. Condition (i) is common for the selection of step size. For instance, we may set δk =
1

k+1
,

which clearly satisfies condition (i). Condition (ii) guarantees that the approximate objective Ĥk

is strongly convex, from which one can see that the nominal arrival schedules must be distinct

from each other. Intuitively, if T̂i = T̂i+1, the deterministic arrival sequence suggests that selecting

both vessels i and i+ 1 is always unnecessary for approximate problems, but it can be optimal

for the actual problem where the arrival sequence is uncertain. To avoid this degenerate case, if

E[Ti] = E[Ti+1] for some i, we may set T̂i = E[Ti] and T̂i+1 = E[Ti+1] + 1. Finally, the algorithm

converges after an infinite number of iterations, which guarantees a near-optimal solution after

sufficiently many iterations. Because the approximate problem in each iteration is solved in poly-

nomial time with the methods proposed in Section 5.1, decision makers can easily control the total

computational time to obtain a solution with reasonable quality.

6. Numerical Study

6.1. The Zespri Case

We set up numerical examples based on the Zespri case. The New Zealand company sells kiwifruit

to many countries around the world, and Europe is one of its major destination markets. In New

Zealand, kiwifruit ripens in early May every year. The maximum lifetime is 3-6 months.6 Europe

is one of Zespri’s major markets, and we will therefore consider Rotterdam as the destination

port. Taking into account the time required for local distribution and downstream sales as well

as the minimum time for the intercontinental transport, we assume that the selling season starts

on the 20-th day after harvest (t0 = 20) and lasts 70 days (N = 70). Available liner services from

Port of Auckland to Port of Rotterdam with their transit times can be found at www.searates.

com. The shortest transit time that a chartered vessel can provide may be calculated based on

distance and sailing speed, which is around 24 days.7 Table 1 lists the expected transit times for

seven representative shipping services. We further assume that transit times follow a multivariate

normal distribution with means given in Table 1. For simplicity, the coefficients of variation are

assumed identical for all i, and are denoted by cvT . The correlation coefficients between pairs of the

transit times are also identical, and are denoted by ρ. For simplicity, let every service offer weekly

departures starting from time 0. Then, we can obtain the distributions of Ti’s in our model by

appropriately discretizing the underlying arrival times. Based on the empirical evidence reported
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Table 1 Representative shipping services from Auckland to Rotterdam

Shipping Service Charter SL 1 SL2 SL 3 SL 4 SL 5 SL 6

Expected Transit Time (days) 24 33 40 42 43 44 46

in Van de Weijer (2013), we set r= (28,24,18,16,15,14,12) such that the freight rate is decreasing

in the transit time of each service.

In the fruit wholesale market, the selling price is affected by the product’s condition such as

the degree of maturity and decay that have occurred since the harvest(Agricultural Marketing

Service 2012, p.12). Moreover, according to our interview with an orange exporter, as late arrivals

will leave downstream customers with less time to make sales, the exporter has to compensate

local distributors for late-arriving fruit. According to Zespri (2014), the company is now using a

combination of charter and liner services to deliver its products. As the precise markdown schedule

may depend on the agreement between the shipper and downstream distributors, which is not

accessible, in the numerical study we assume p(t) = 100 for 1 ≤ t≤ 10; p(t) = 100− 5
3
(t− 10) for

11≤ t≤ 70; p(N +1)= p(71) = 0.

Our analysis in Section 4 has revealed the two benefits of Zespri’s current strategy of using a

mix of shipping modes. On the one hand, the fruit in chartered vessels arrives early in the season

and enjoys a premium, whereas the fruit shipped by ocean liners enables Zespri to sustain the

fruit supply till late in the season, which helps improve its overall service level. On the other hand,

splitting shipments helps mitigate risks associated with the notoriously unreliable ocean shipping

services.

6.2. Impact of Schedule Reliability

To examine how the uncertain arrival schedule influences portfolio selection, we consider the single-

demand setting in which D ∼N(1000, σ2
D), where σD = 1000cvD, h

O = 0.1, hB
i = 0.05 and si = 1

for all i = 1,2, ...,7. Recall that in the single-demand setting, it suffices to consider the earliest

departure of every shipping service. Thus, M = 7. When implementing Algorithm 2, we choose

T̂i = E[Ti] for all i as the initial approximation and δk =
1

k+1
. In the following experiments, we

will report the solution generated after 100 iterations of Algorithm 2 as the “optimal” portfolio,

denoted by q∗.

Tables 2a and 2b compare the optimal shipping volumes given different levels of cvT and ρ,

where qd represents the optimal volumes when T is perfectly deterministic. It can be seen that

compared to qd, the optimal portfolio can be vastly different when the uncertainty in T is taken into

account. As cvT increases or ρ decreases, it is imperative to select more services with similar arrival

schedules (e.g., SL2, SL3, SL4, SL5) in order to diversify the risks arising from uncertain arrival
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times. These observations highlight the importance of incorporating uncertain arrival schedules

into the portfolio selection model.

(a) Impact of cvT (ρ=0, cvD = .6)

(b) Impact of ρ (cvT = .1, cvD = .4)

Table 2 Impact of service reliability on the optimal shipment allocation

6.3. Impact of Inventory Holding Costs

Next, we demonstrate the implications of inventory holding costs in the multi-demand setting. All

d(t)’s are independent and normally distributed where E[d(1)] = 100 and E[d(t)] = 10 for t ≥ 2,

and the coefficient of variation for each d(t) equals 0.6. The other parameters are unchanged. With

multiple demands over time, for each shipping service, we need to consider as candidates all the

vessels that depart in different weeks but arrive within the season.

For illustrative purpose, we restrict our attention to the voyages provided by SL3, SL5 and SL6

in Table 1 and set cvT =0.1 and ρ= 0.

Table 3 Impact of hD on the optimal shipment allocation in the multiple-demand setting

Table 3 presents the optimal portfolios given hD = 0.1 and hD = 0.5. The optimal portfolio

under the multi-demand setting can be viewed as a shipping schedule, prescribing the shipping

volumes (reported in the table) arriving in each time period. Early in the season all services are
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simultaneously used for diversification, and late in the season the shipper may need to defer some

shipments with the slow and cheap service (when hD = 0.5) to properly allocate the inventory

holding costs incurred at the origin and the destination. However, comparing the cases of hD =0.1

and hD =0.5, we find that a change in the value of hD may lead to different extents of diversification:

With a higher hD, more shipments need to be deferred so as to reduce the inventory cost at the

destination.

7. Extensions

7.1. Setup Costs

A setup cost may be incurred when shippers decide to use one more vessel. For example, the

setup cost may include the shipper’s internal administrative cost involved in signing an additional

shipping contract. Moreover, if the vessel has a different departure time than others, the shipper

will have to send the cargoes to the port terminal via another truck fleet.

Let Ki denote the setup cost incurred if the shipper uses vessel i, where i = 1,2, ...,M , and

vessels are indexed according to the expected arrival sequence. Suppose that the arrival sequence

is deterministic. The cost function can be adapted as

HK(q) =H(q)+
M
∑

i=1

KiI(qi > 0) =
M
∑

i=1

{Li(qi)+ ciqi+KiI(qi > 0)}, (23)

where the Li’s are defined in Section 5.1.2.

Although the problem with setup costs is nonconvex, the necessary optimality condition stated

in Lemma 2 remains valid. Therefore, we can compute the optimal solution as long as the set of

vessels to be used has been determined. Moreover, given the optimal portfolio J = {j1, j2, ..., j|J|}

and the optimal aggregate quantities y∗, the expected cost can be expressed as

HK(y∗) = (w0,j1 +Kj1)+

|J|−1
∑

k=1

(wjk ,jk+1
(y∗

jk
)+Kjk+1

)+wj|J|,M+1(y
∗
j|J|

), (24)

where w0,i, wi,j(·) and wi,M+1(·) are defined in (17)(18) and (19).

As before, the cost function is decomposed into |J |+ 1 parts, but now the first |J | parts also

include the setup costs incurred by each of the vessels in the portfolio. We can then modify graph

G constructed in Section 5.1.2 and solve (23) in an analogous manner. For the two parameters yij

and dij of each edge, we only need to adjust the value of dij to include setup costs while keeping

the definition of parameters yij unchanged, as for any given portfolio J , the resulting aggregate

shipping quantities y also satisfy the necessary optimality conditions in Lemma 2. In particular,

we can redefine the parameters dij as follows:

• for edge (i, j) where 1≤ i < j ≤M , dij =wi,j(yij)+Kj;
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• for edge (O, i) where 1≤ i≤M , dO,i =w0,i +Ki;

• for edge (i,E) where 1≤ i≤M and edge (O,E), the distance parameters are defined as before,

i.e., di,E =wi,M+1(yi,E) and dO,E =
∑M

i=1Li(0).

For an uncertain arrival sequence, the idea of Algorithm 2 can still be borrowed to construct

heuristics, although the convergence may not hold due to the nonconvexity of (23). For example,

one can initially ignore setup costs and run Algorithm 2 for k̄ iterations, where k̄ is chosen as a

large number so that the resulting approximation Ĥ k̄(q) is reasonably close to the exact objective

function without setup costs. Then, we can obtain an approximate solution by minimizing Ĥ k̄(q)+
∑M

i=1KiI(qi > 0) over q≥ 0 using the monotone shortest-path algorithm described earlier.

7.2. Single Demand with Partial Lost Sales

In addition to markdowns, late arrivals may also lead to a loss of customers. In this subsection, we

consider the single-demand setting (D(t) =D for all t and hD = 0) where some of the unsatisfied

demand will be lost. In each time period, we assume that only a fraction β of unsatisfied customers

remains in the market. Conditioning on an arrival scheduleT where T1 ≤ T2 ≤ ...≤ TM , the shipper’s

revenue from period T1 to T2 − 1 equals

p(T1)min{βT1−1D,q1}+ p(N +1)(q1−βT1−1D)+

=(p(T1)− p(N +1))βT1−1D− (p(T1)− p(N +1))βT1−1(D−
q1

βT1−1
)+ + p(N +1)q1.

Likewise, for i= 2, ...,M , the revenue from periods Ti to Ti+1 − 1 (where TM+1 =N +1) can be

written as

p(Ti)β
Ti−1min{[D−

i−1
∑

k=1

qk
βTk−1

]+,
qi

βTi−1
}+ p(N +1)βTi−1(

qi
βTi−1

− [D−

i−1
∑

k=1

qk
βTk−1

]+)+

=(p(Ti)− p(N +1))βTi−1[D−

i−1
∑

k=1

qk
βTk−1

]+ − (p(Ti)− p(N +1))βTi−1[D−

i
∑

k=1

qk
βTk−1

]+ + p(N +1)qi.

Summing up the above revenue terms and subtracting the shipping cost and inventory holding

cost, with partial lost sales, the shipper’s problem for fixed T can be expressed as

min
q≥0

HL(q|T ) =E[
M−1
∑

i=1

(

(p(Ti)− p(N +1))βTi−1 − (p(Ti+1)− p(N +1))βTi+1−1
)

(D−

i
∑

k=1

qk
βTk−1

)+

+(p(TM)− p(N +1))βTM−1(D−

M
∑

k=1

qk
βTk−1

)+] +
M
∑

i=1

ciqi.

(25)

The above problem has the same structure as our single-demand model without lost sales except

that the variables and parameters must be adjusted by the fraction β. Specifically, we can define

Qi =
qi

βTi−1 as new decision variables and then regard ciβ
Ti−1 and (p(Ti)− p(N +1))βTi−1 in (25)
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as ci and (p̄i − p(N +1)) in our base model, respectively. Therefore, for a fixed T , Algorithm 1

and Theorem 3 can be extended to incorporate the partial lost sales. To allow for uncertain T ,

we can follow the idea of Algorithm 2. Conditioning on T , the gradient ∇HL(q|T ) is not difficult

to evaluate. Thus, one can first construct an initial approximation ĤL using some fixed nominal

arrival schedule, and then calibrate c iteratively with the gradient information.

It is worth noting that the insights derived from our base model may change when the fraction

of lost sales is large. Appendix EC.3 provides a numerical example showing that the value of diver-

sifying with slow services is reduced as the market size rapidly shrinks over time. The important

caveat is that although the benefit of using slow services arises from time-sensitive prices, shippers

should also pay attention to potential lost sales due to late arrivals.

8. Conclusion

Ocean carriers offer shipping services with various transit times and freight rates. A major chal-

lenge facing seasonal product exporters is how to balance the trade-off between the speed and

the transportation cost. Delivering the product to the market earlier normally brings higher profit

margins, but faster shipping services are more costly. Given uncertainties in both demand and ves-

sels’ arrival times, we show that maintaining a portfolio of shipping services enables the shipper to

manage risks from both the demand and supply sides. On the one hand, a combination of fast and

slow shipping modes helps the shipper cope with demand uncertainty in a similar fashion that a

portfolio of supply option contracts does in the newsvendor procurement problem (e.g., Mart́ınez-

de Albéniz and Simchi-Levi 2005). On the other hand, splitting shipments among vessels also serves

to mitigate the uncertainty in arrival schedules, which mirrors the effect of supply diversification

(e.g., Anupindi and Akella 1993). Therefore, our shipping problem combines these two portfolio

effects which have been previously understood as separate issues. By extending several existing

results in the literature, we have first analyzed the structure of the solution under some conditions,

and then developed a solution approach to the general problem. Moreover, a real-world case study

has been conducted to demonstrate the practical implications of our model.

There are several directions for future research. First, we have assumed an exogenous demand

process with a given price schedule. In reality, a powerful seasonal-product seller may be able to

influence the market price. Endogenizing pricing decisions will be an interesting extension for future

study. Second, another reason for shippers to use multiple vessels could be the limited capacity

of ocean carriers. The problem becomes more challenging if capacity constraints are taken into

account. Third, we have assumed that the markdown process is exogenously given. The case in

which the shipper can also determine market prices is an interesting direction for future research.

Finally, we may further endogenize carriers’ decisions based on a game-theoretical framework, as
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the shipper would be able to obtain lower freight rates and better services from the competition

among carriers.

Endnotes

1. The contract between a shipper and a carrier often only specifies a price per TEU (twenty-foot

equivalent unit). The shipper may also incur an internal fixed cost when shipping via an additional

vessel. We will incorporate this as the setup cost in Section 7.1.

2. Throughout the paper, we use “increasing/decreasing” in a weak sense.

3. Model III in Anupindi and Akella (1993) considers a multi-period dual sourcing problem in

which the delivery can be delayed. However, the length of delay can only be one period.

4. For example, Babich et al. (2007) present a similar graphic illustration for their Proposition 1.

5. For instance, one may set Q̄i as the newsvendor solution when vessel i is the only candidate.

Note that H(q) is supermodular in q and therefore q∗i cannot exceed the optimal quantity in vessel

i when all other vessels are inactive.

6. http://www.tis-gdv.de/tis_e/ware/obst/kiwi/kiwi.htm

7. http://www.sea-distances.org/. Charter services may also make intermediate stops. Here, we

assume an exclusive charter service, sailing directly from Auckland to Rotterdam, to represent the

fastest service.
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Electronic Companion to “Carrier Portfolio Management for
Shipping Seasonal Products”

EC.1. Proofs

Proof of Theorem 1 The theorem is a special case of Theorem 2 when T1 ≤ T2 with proba-

bility one. The proof of Theorem 2 will be presented later. Here we show that Theorem 2 reduces

to Theorem 1 if Pr{T1 ≤ T2}= 1.

First, notice that for all i, we have

E[p(Ti)]− pN+1 =
N
∑

t=1

b(t)Gi(t) (EC.1)

Invoking equation (EC.1) in part (i) of Theorem 2 yields q∗ = (0,0) if ci ≥E[p(Ti)]− p(N +1).

From part (ii) of Theorem 2, q∗ = (qs1,0) if c1 <
∑N

t=1 b(t)G1(t) =E[p(T1)]− p(N +1) and

c2 −

∑N

t=1 b(t)Pr{T1 ≤ t, T2 ≤ t}
∑N

t=1 b(t)G1(t)
c1−

N
∑

t=1

b(t)Pr{T1 > t,T2 ≤ t}

=c2 −

∑N

t=1 b(t)Pr{T2 ≤ t}
∑N

t=1 b(t)G1(t)
c1 − 0

=c2 −
E[p(T2)]− p(N +1)

E[p(T1)]− p(N +1)
c1 ≥ 0,

where the first equality follows by the assumption of Pr{T1 ≤ T2}= 1, and the second equality fol-

lows from equation (EC.1). Rearranging the terms, we have q∗ = (qs1,0) if c1 <E[p(T1)]−p(N +1)

and c1
E[p(T1)]−p(N+1)

≤ c2
E[p(T2)]−p(N+1)

.

Similarly, from part (ii) of Theorem 2, q∗ = (0, qs2) if c2 <E[p(T2)]− p(N +1) and

c1 −

∑N

t=1 b(t)Pr{T1 ≤ t, T2 ≤ t}
∑N

t=1 b(t)G2(t)
c2−

N
∑

t=1

b(t)Pr{T1 ≤ t, T2 > t}

=c1 − c2 −
N
∑

t=1

b(t)Pr{T1 ≤ t, T2 > t}

=c1 − c2 −
N
∑

t=1

b(t)(Pr{T1 ≤ t}−Pr{T1 ≤ t, T2 ≤ t})

=c1 − c2 −
N
∑

t=1

b(t)(Pr{T1 ≤ t}−Pr{T2 ≤ t})

=c1 − c2 −E[p(T1)]+E[p(T2)]≥ 0,

where we have also invoked the assumption Pr{T1 ≤ T2}= 1 in the derivation. Hence, q∗ = (0, qs2)

if c2 <E[p(T2)]− p(N +1) and E[p(T1)]− c1 ≤E[p(T2)]− c2.
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Finally, from part(iii) of Theorem 2, we have q∗ = (qd1 , q
d
2) if E[p(T1)]− c1 > E[p(T2)]− c2 and

c1
E[p(T1)]−p(N+1)

> c2
E[p(T2)]−p(N+1)

, i.e., conditions (5) and (6) hold.

We may also check whether the two equations, qd1 = F̄−1( c1−c2
E[p(T1)]−E[p(T2)]

) and qd1 + qd2 =

F̄−1( c2
E[p(T2)]−p(N+1)

), have a solution. It suffices to verify that c2
E[p(T2)]−pN+1

< c1−c2
E[p(T1)]−E[p(T2)]

. We

have
c2

E[p(T2)]−pN+1
< c1−c2

E[p(T1)]−E[p(T2)]

⇔ c2(E[p(T1)]−E[p(T2)])< (c1− c2)(E[p(T2)]− p(N +1))
⇔ c2E[p(T1)]− c2E[p(T2)]< c1E[p(T2)]− c1p(N +1)− c2E[p(T2)]+ c2p(N +1)
⇔ c2(E[p(T1)]− p(N +1))< c1(E[p(T2)]− p(N +1))
⇔ c2

E[p(T2)]−p(N+1)
< c1

E[p(T1)]−p(N+1)
.

Hence, the existence of solutions is guaranteed by condition (6).

Proof of Corollary 1 Part (i) follows immediately from Theorem 1.

Let us consider part (ii). By mean-preserving transform, we can write D as D= ηD̂+(1− η)µD

where 0≤ η ≤ 1. Note that Var(D) = η2Var(D̂) so Var(D) is increasing in η. Denote by FD(x) and

FD̂(x) the cumulative functions of D and D̂, respectively. By Theorem 1, in the optimal solution

we have F̄D(q
d
1) = F̄D̂(q̂

d
1) and F̄D(q

d
1 + qd2) = F̄D̂(q̂

d
1 + q̂d2) because no parameters change except D.

Notice that
F̄D(x) = Pr{D>x}=Pr{ηD̂+(1− η)µD >x}

=Pr{D̂ >
x− (1− η)µD

η
}

= F̄D̂(
x− (1− η)µD

η
).

Hence, q̂d1 =
qd1−(1−η)µD

η
and q̂d1 + q̂d2 =

qd1+qd2−(1−η)µD

η
. These equations together imply qd2 = ηq̂d2 ≤ q̂d2 .

Also, by rearranging the terms, we have qd1 − µD = η(q̂d1 − µD) and qd1+qd2 − µD = η(q̂d1+q̂d2 − µD).

Then, the results immediately follow.

For part (iii), without loss of generality, suppose that the transit time of vessel 1 is shorter, i.e.,

t0+E[T1]−1−s1 ≤ t0+E[T2]−1−s2, or equivalently, E[T1]−s1 ≤E[T2]−s2. Then,
c1−c2

E[p(T1)]−E[p(T2)]

is decreasing in hB, as d

dhB (c1− c2) = (E[T1]− s1)− (E[T2]− s2)≤ 0. On the other hand, F̄−1(x) is

decreasing in x. Hence, qd1 is increasing in hB. Similarly, since qd1 + qd2 = F̄−1( c2
E[p(T2)]−p(N+1)

), and

c2 is increasing in hB, the total quantity qd1 + qd2 is decreasing in hB. It then follows that qd2 is

decreasing in hB.

Proof of Theorem 2 Let (q∗1, q
∗
2) denote the optimal solution to (2). It can be verified that

H(q) is convex in q. Thus, the first-order condition is necessary and sufficient for the optimality.

Then, it suffices to verify that ∂H(q∗)

∂qi
= 0 if q∗i > 0 and ∂H(q∗)

∂qi
≥ 0 if q∗i = 0 for i=1,2.

Taking the first derivative, we have, for i= 1,2,

∂H(q)

∂qi
= ci+

N
∑

t=1

b(t)

∂E[D−
2
∑

i=1

qiI(Ti ≤ t)]+

∂qi
, (EC.2)
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where

∂E[D−
2
∑

i=1

qiI(Ti ≤ t)]+

∂qi
=−F̄ (q1 + q2)Pr{Ti ≤ t, T3−i ≤ t}− F̄ (qi)Pr{Ti ≤ t, T3−i > t}.

All possible pairs of (c1, c2) can be segmented into four regions according to the conditions

in cases (i)-(iii) (see Figure 4). In what follows, we will verify the first-order condition with the

proposed solution for each segmentation.

Under the conditions in case (i), we have ∂H(q)

∂qi
= ci −

∑

t
b(t)Gi(t) ≥ 0 for all i = 1,2 when

q= (0,0). The first-order condition is satisfied at q= (0,0) and this implies that q∗ = (0,0) is the

optimal solution in case (i). Furthermore,
∂E[D−

2∑

i=1
qiI(Ti≤t)]+

∂qi
is increasing in both q1 and q2 and so

is ∂H(q∗)

∂qi
. Therefore, if qi > 0 for some i, the first-order derivative ∂H(q∗)

∂qi
cannot equal zero. Hence,

q∗ = (0,0) is also the unique solution in case (i).

For case (ii), we consider i= 1 for instance. For i= 2, the proof is symmetric. We need to verify

that ∂H(q)

∂q1
= 0 and ∂H(q)

∂q2
≥ 0 when q1 = qs1 and q2 = 0. Given q1 = qs1 and q2 = 0, it follows that

∂H(q)

∂q1
= c1 −

∑

t

b(t)G1(t)F̄ (qs1) = 0,

where the equality follows immediately by (7). Also, we have

∂H(q)

∂q2
= c2 − F̄ (qs1)

N
∑

t=1

b(t)Pr{T1 ≤ t, T2 ≤ t}− F̄ (0)
N
∑

t=1

b(t)Pr{T1 > t,T2 ≤ t}

= c2 − c1

N
∑

t=1

b(t)Pr{T1 ≤ t, T2 ≤ t}

N
∑

t=1

b(t)G1(t)

−

N
∑

t=1

b(t)Pr{T1 > t,T2 ≤ t}

≥ 0

where the third equality follows by invoking (7) and F̄ (0) = 1, and the last inequality follows

provided that the condition of case (ii) holds. By convexity, we can conclude that (qs1,0) is optimal

in case (ii) when i= 1. Furthermore, we can also argue that (qs1,0) is the unique solution. First,

(0,0) cannot be optimal in this case as ∂H(q)

∂q1
|q=(0,0) = c1 −

∑N

t=1 b(t)G1(t)< 0, which contradicts

the optimality condition. Second, suppose q1 = 0 and q2 > 0 in the optimal solution. We must have

∂H(q)

∂q2
= 0, which implies F̄ (q2) =

c2∑N
t=1 b(t)G2(t)

≤ 1. The optimality also requires

∂H(q)

∂q1
|q=(0,q2)c1 −

N
∑

t=1

b(t)Pr{T1 ≤ t, T2 ≤ t}F̄ (q2)−
N
∑

t=1

b(t)Pr{T1 ≤ t, T2 > t}

= c1 −

∑N

t=1 b(t)Pr{T1 ≤ t, T2 ≤ t}
∑N

t=1 b(t)G2(t)
c2 −

N
∑

t=1

b(t)Pr{T1 ≤ t, T2 > t} ≥ 0.
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However, any pair of (c1, c2) satisfying the above inequality would not fall into the set {(c1, c2) :

c1 −
∑N

t=1 b(t)G1(t)< 0, c2 − c1

N∑

t=1
b(t)Pr{T1≤t,T2≤t}

N∑

t=1
b(t)G1(t)

−
N
∑

t=1

b(t)Pr{T1 > t,T2 ≤ t}}. This can be checked

easily by drawing a graph in the c1-c2 coordinate plane. Finally, suppose q1 > 0 and q2 > 0 in the

optimal solution. We must have ci− F̄ (q1+q2)
∑

t=1 b(t)Pr{T1 ≤ t, T2 ≤ t}− F̄ (qi)
∑N

t=1 b(t)Pr{Ti ≤

t, T3−i > t}= 0 for both i= 1,2. The equation for i= 1 implies that

0 = c1 − F̄ (q1 + q2)
∑

t=1

b(t)Pr{T1 ≤ t, T2 ≤ t}− F̄ (q1)
N
∑

t=1

b(t)Pr{T1 ≤ t, T2 > t}

< c1 − F̄ (q1 + q2)
N
∑

t=1

b(t)G1(t).

Equivalently, F̄ (q1 + q2)<
c1∑N

t=1 b(t)G1(t)
. The equation for i=2 requires

0 = c2 − F̄ (q1 + q2)
∑

t=1

b(t)Pr{T1 ≤ t, T2 ≤ t}− F̄ (q2)
N
∑

t=1

b(t)Pr{T2 ≤ t, T1 > t}

> c2 − F̄ (q1 + q2)
∑

t=1

b(t)Pr{T1 ≤ t, T2 ≤ t}−
N
∑

t=1

b(t)Pr{T2 ≤ t, T1 > t}

> c2 −
c1
∑

t=1 b(t)Pr{T1 ≤ t, T2 ≤ t}
∑N

t=1 b(t)G1(t)
−

N
∑

t=1

b(t)Pr{T2 ≤ t, T1 > t},

where the first inequality follows as F̄ (q2) < 1 for q2 > 0 and the second inequality follows as

F̄ (q1 + q2) <
c1∑N

t=1 b(t)G1(t)
. However, the resulting inequality contradicts the condition in case (ii)

when i= 1. Therefore, q1 > 0 and q2 > 0 cannot be optimal in case (ii). In sum, (qs1,0) is also the

unique optimal solution in case (ii) when i= 1.

In case (iii), we have c3−i −
ci

∑
t=1 b(t)Pr{T1≤t,T2≤t}
∑N

t=1 b(t)Gi(t)
−
∑N

t=1 b(t)Pr{T3−i ≤ t, Ti > t} < 0 for both

i = 1,2 (corresponding to region ABOE in Figure 4). These two conditions in effect guarantee

that there exist q∗1 > 0 and q∗2 > 0 such that ∂H(q∗)

∂qi
= 0 for both i= 1,2. Clearly, qi = 0 for some i

cannot be optimal in case (iii), since the optimality of the boundary solution requires ∂H(q∗)

∂qi
≥ 0

and q∗i = 0, which can be achieved only under the conditions in case (i) or (ii).

Proof of Theorem 3 Due to the convexity of the objective function, it suffices to verify the

first-order conditions, which are given by q∗T∇H(q∗) = 0, i.e., ∂H(q∗)

∂q∗
i

= 0 for q∗i > 0 and ∂H(q∗)

∂qi
≥ 0

for q∗i =0.

The Case of J = {iA} First, consider the case of |J | = 1, i.e., iA = iB . The solution to be

verified is q∗iA = F̄−1(
ciA

p̄iA
−p(N+1)

), and q∗i = 0 for any i 6= iA. So it suffices to show that ∂H
∂qi

= 0 for

i= iA and ∂H

∂qi
≥ 0 for any i 6= iA.
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For any i > iA, the first-order derivative is given by

∂H

∂qi
|q=q∗ = ci− (p̄i− p(N +1))F̄ (q∗1 + q∗2 + ...+ q∗i )

= ci− (p̄i− p(N +1))F̄ (q∗iA)≥ 0
,

where the inequality follows by (11), the definition of iB (recall that in this case iA and iB denote

the same shipping service).

For i= iA, we have
∂H

∂qiA

∣

∣

∣

∣

q=q∗

= ciA − (p̄iA − p(N +1))F̄ (q∗iA) = 0.

For i < iA, we have

∂H

∂qi

∣

∣

∣

∣

q=q∗

= ci− (p̄i− p̄iA)F̄ (0)− (p̄iA − p(N +1))F̄ (q∗iA)

= ci− (p̄i− p̄iA)− ciA ≥ 0,

where the last inequality holds by (10), the definition of iA. Hence, we have completed the proof

for the case of iA = iB .

The Case of J = {iA, iB} Consider the case of J = {iA, iB}. Similarly, we need to show ∂H
∂qi

≥ 0

for any i 6= iA and iB, and
∂H
∂qi

= 0 for i= iA and i= iB .

For i > iB , the first-order derivative is

∂H

∂qi

∣

∣

∣

∣

q=q∗

= ci− (p̄i− p(N +1))F̄ (q1
∗ + q2

∗ + ...+ qi
∗)

= ci− (p̄i− p(N +1))F̄ (q∗iA + q∗iB )

= ci− (p̄i− p(N +1))
c(iB)

p̄iB − p(N +1)
≥ 0,

where the inequality follows by (11).

For i= iB , we have ∂H

∂q(iB )

∣

∣

∣

q=q∗
= ciB − (p̄iB − p(N +1))F̄ (q∗iA + q∗iB ) = 0.

For iA < i< iB , we have

∂H

∂qi

∣

∣

∣

∣

q=q∗

= ci − (p̄i− p̄iB )F̄ (q∗iA)− (p̄iB − p(N +1))F̄ (q∗iA + q∗iB )

= ci − (p̄i− p̄iB )
ciA − ciB
p̄iA − p̄iB

− (p̄iB − p(N +1))
ciB

p̄iB − p(N +1)

= (ci− ciB )− (p̄i− p̄iB )
ciA − ciB
p̄iA − p̄iB

≥ 0.

The last inequality can be explained as follows. J = {iA, iB} implies that Algorithm 1 stops at

Step 1. According to Step 1, we must have
ciA

−ciB
p̄iA

−p̄iB
≤

ci−ciB
p̄i−p̄iB

for all iA < i < iB , which implies the

above ”≥ 0”.

For i = iA, one can directly verify that ∂H
∂qiA

∣

∣

∣

q=q∗
= ciA − (p̄iA − p̄iB )F̄ (q∗iA) − (p̄iB −

p(N +1))F̄ (q∗iA + q∗iB ) = 0.
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For i < iA, we have

∂H
∂qi

∣

∣

∣

q=q∗
= ci− (p̄i− p̄iA)F̄ (0)− (p̄iA − p̄iB )F̄ (q∗iA)− (p̄iB − p(N +1))F̄ (q∗iA + q∗iB )

= ci − (p̄i− p̄iA)− ciA = (p̄iA − ciA)− (p̄i− ci)≥ 0,

where the last inequality follows by (10), the definition of iA (service iA has the highest marginal

profit). We are done for the case of J = {iA, iB}.

The Case of J = {iA, jk, ..., j1, iB}, (k ≥ 1) Similarly, we need to show ∂H
∂qi

≥ 0 for any i /∈ J ,

and ∂H
∂qi

= 0 for any i∈ J .

For i≥ iB, the proof is the same as that for the case of J = {iA, iB} for i≥ iB .

For j1 < i < iB , we have

∂H
∂qi

∣

∣

∣

q=q∗
= ci − (p̄i− p̄iB )F̄ (q∗iA +

jk
∑

i=j1

q∗i )− (p̄iB − p(N +1))F̄ (q∗iA +
jk
∑

i=j1

q∗i + q∗iB )

= ci− (p̄i− p̄iB )
cj1

−ciB
p̄j1

−p̄iB
− (p̄iB − p(N +1))

ciB
p̄iB

−p(N+1)

= (ci− ciB)− (p̄i− p̄iB )
cj1

−ciB
p̄j1

−p̄iB
≥ 0,

where the last inequality holds since according to Algorithm 1 j1 is selected such that
cj1

−ciB
p̄j1

−p̄iB
≤

ci−ciB
p̄i−p̄iB

for all iA ≤ i < iB .

For jτ < i< jτ−1 for τ =2, ..., k, we have

∂H
∂qi

∣

∣

∣

q=q∗
= ci− (p̄i− p̄jτ−1

)F̄ (q∗iA +
jk
∑

i=jτ

q∗i )

−...− (p̄j1 − p̄iB )F̄ (q∗iA +
jk
∑

i=j1

q∗i )− (p̄iB − p(N +1))F̄ (q∗iA +
jk
∑

i=j1

q∗i + q∗iB )

= ci − (p̄i− p̄jτ−1
)F̄ (q∗iA +

jk
∑

i=jτ

q∗i )− ...− (cj1 − ciB)− ciB

= (ci− cjτ−1
)− (p̄i− p̄jτ−1

)F̄ (q∗iA +
jk
∑

i=jτ

q∗i )

= (ci− cjτ−1
)− (p̄i− p̄jτ−1

)
cjτ−cjτ−1

p̄jτ −p̄jτ−1
≥ 0,

where the inequality follows since jτ is selected such that
cjτ −cjτ−1

p̄jτ −p̄jτ−1
≤

ci−cjτ−1

p̄i−p̄jτ−1
for all iA ≤ jτ−1.

For i= jτ where τ =1, ..., k, it is straightforward to verify that ∂H

∂qi
= 0.

For iA < i< jk, the proof is analogous to that for the case of J = {iA, iB} for any iA < i< iB.

For i≤ iA, the proof is analogous to that for the case of J = {iA, iB} for i≤ iA.

Proof of Corollary 2 From (11), the definition of iB , one can deduce that

ciB
p̄iB − p(N +1)

≤
cj1

p̄j1 − p(N +1)
⇒ cj1 ≥ ciB

p̄j1 − p(N +1)

p̄iB − p(N +1)
≥ ciB .

Likewise, from the constructions of j1, j2, ..., jk, one can verify that ciA ≥ cjk ≥ ...≥ cj2 ≥ cj1 .
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Proof of Lemma 2 The derivative of Li(y) is given by L′
i(y) = −ET[

∑T(i+1)−1

t=T(i)
b(t)F̄t(y) −

hDFt(y)], where we have interchanged the derivative and expectation as the derivative inside the

expectation is clearly finite. Given the optimal portfolio |J |, we have ∂H(q∗)

∂qjv
= 0 for all v =1,2, ..., |J |.

These |J | equations constitute a linear system with respect to
∑jk+1−1

i=jk
L′

i(
∑k

v=1 q
∗
jv
) where k =

1,2, ..., |J |−1 and
∑M

i=j|J|
L′

i(
∑|J|

v=1 q
∗
jv
). Equations (14) and (15) immediately follow by solving this

linear system.

Proof of Theorem 5 Algorithm 2 falls into a class of stochastic approximation schemes pro-

posed in Cheung and Powell (2000). The only modification is that we use a sample average to

estimate the actual gradient, instead of a single sample. This is because in our problem, compared

to solving an approximate problem in one iteration, it is relatively simple to evaluate the gradient

as the closed-form expression is available. Their proof for the convergence remains valid under this

slight modification, and thus we will not repeat it. According to Theorem 1 in their work, the

convergence is guaranteed if (1) the constraint set Q = {0 ≤ q ≤ Q̄} is convex and compact; (2)

E[H(q)] is convex, finite and continuous on Q; (3) ∇H(q|T ) is bounded for all realizations of T ;

(4) Ĥk(q) is strongly convex; (5) the step size satisfies 0< δk < 1,
∑∞

k=1 δk =∞,
∑∞

k=1 δ
2
k <∞; (6)

Ĥ0(q) is bounded and continuous, and ∇Ĥ0(q) is bounded for all q ∈Q. It is straightforward to

verify that the gradient of H(q|T ) is bounded for any realization of T and so is the gradient of

Ĥ0. The only remaining task is to provide conditions for the strong convexity of Ĥ0.

A function f is strongly convex if and only if there exists a constant ǫ > 0 such that f(x)− ǫ‖x‖2.

For a twice-differentiable function, this means that f is strongly convex if ∇2f(x)� ǫI for some

constant ǫ > 0. Because a strongly convex function is still strongly convex after adding linear

terms, it suffices to show that the initial approximation Ĥ0(q) is strongly convex. Define ak =
∑T̂k+1−1

t=T̂k
(b(t) + hD)ft(

∑k

j=1 qj). For notational ease, we have omitted the dependence on q. The

Hessian matrix of Ĥ0 can be expressed as

∇2Ĥ0 =







a1 + a2 + ...+ aM a2 + ...+ aM ... aM

a2 + ...+ aM a2 + ...+ aM ... aM

... ... ... ...
aM aM ... aM






.

For any q ∈Q, we need to show ∇2Ĥ0 � ǫI for some constant ǫ > 0. As Q is compact, it suffices

to show that the smallest eigenvalue of ∇2Ĥ0 is strictly positive for any q ∈ Q. Notice that the

diagonal matrix diag{a1, a2, ..., aM} is congruent with ∇2Ĥ0, as

∇2Ĥ0 =







1 1 ... 1
0 1 ... 1
... ... ... ...
0 0 ... 1













a1 0 ... 0
0 a2 ... 0
... ... ... ...
0 0 ... aM













1 0 ... 0
1 1 ... 0
... ... ... ...
1 1 ... 1






.
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By Sylvester’s Law of Inertia, the number of positive entries in diag{a1, a2, ..., aM} is the same

as the number of positive eigenvalues of ∇2H0 (Schultz 2011). Hence, for any q ∈Q, the smallest

eigenvalue of ∇2H0 is positive if every one of the ai’s is positive, which leads to condition (ii) stated

in the theorem.

EC.2. The Monotone Shortest Path Algorithm to Determine q∗

We discuss the modified shortest-path algorithm used to determine q∗ in the multi-demand model.

Note that with multiple demands, it is possible to have ci < cj for i < j, i.e., later arrivals may cost

more than earlier ones. For example, if vessels i and j belong to the same shipping service and

vessel j departs one week later, then vessels i and j have the same freight rate but cj includes a

higher inventory cost incurred at the origin. Consequently, dij = wi,j(yij) in the graph G may not

be positive. Therefore, when searching for the monotone shortest path, we would have to adopt the

framework of Bellman-Ford Algorithm (see, for instance, Butler 2012), rather than the well-known

and more efficient Dijkstra’s Algorithm.

Algorithm 3. Initialize the graph G = {V,E}: Compute the parameters (yij, dij) for all (i, j)∈

E . For all v ∈ V and i= 1, ...,M +1, let dist(v, i) represent the minimum distance from vertex

v to vertex E that uses i or fewer edges. Set dist(E, i) = 0 for all i.

for all v 6=E do

dist(v,1) := dv,E

succ(v) :=E

end for

for i=2 do M +1

for all v 6=E do

dist(v, i) := dist(v, i− 1)

for all (v,x)∈ E and x 6=E do

if dv,x+ dist(x, i− 1)< dist(v, i) and yv,x <yx,succ(x) then

dist(v, i) := dv,x+ dist(x, i− 1)

succ(v) := x

end if

end for

end for

end for

return dist(O,M +1), succ
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The above procedure is the standard Bellman-Ford algorithm except that we search only among

the possible paths with yij strictly increasing. The output dist(O,M+1) equals the minimum value

of the objective function (13) and the output succ keeps track of the vertices along the monotone

shortest path, i.e., the optimal portfolio. The optimal shipping quantities can then be determined

by the values of yij along the optimal path. The value of each yij can be easily computed from

solving equation (20) or (21), whereas dij can be evaluated from our closed-form expressions. Given

the parameters (yij, dij), it is easy to see that the complexity of finding the monotone shortest path

is O(M 3). Therefore, the portfolio selection can be solved efficiently via the proposed dynamic

programming-based method.

EC.3. The Impact of Lost Sales

To illustrate the impact of lost sales on the optimal portfolio, we consider four shipping services

providing deterministic arrival times T= (5,6,7,8) with freight rates r= (24,20,15,11). Set t0 = 0,

N = 14, hD = hB
i = .1 and the price schedule as p(t) = 61− 30

7
(t− 1) for 1 ≤ t ≤ 15. D follows a

gamma distribution with µD =100 and cvD = 1.2.
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(b) The value of using slow services

Figure EC.1 Effect of lost sales on the optimal portfolio

Figure EC.1a shows that with no lost sales, i.e., 1− β = 0, all four services are used, but more

shipments go to the fastest service as the fraction of lost sales 1−β increases. The slowest service

(i.e., service 4) is the first to be eliminated from the portfolio when β drops to 0.4, and then

services 3 and 2 are ruled out in turn. In the example, only the shipments via service 1 will arrive

in the first period of the season and therefore be sold at the full price, whereas other services will

lead to lower selling prices and possibly the loss of customers. In Figure EC.1b, we compare the
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expected profit without diversifying with late arrivals (i.e., using only service 1) and that generated

by the optimal portfolio. Because service 1 arrives in the first period, only using service 1 leads

to an expected profit constant in β. When there are no lost sales (i.e., 1− β = 0), compared with

supplying all shipments in the first period, diversifying with late arrivals can improve the profit

by 20%. However, this improvement becomes insignificant when the fraction of lost sales is close

to one. Therefore, an important caveat is that while the benefit of using slow services arises from

time-sensitive prices, shippers should also pay attention to how unsatisfied demand is sensitive to

time.


