186,511 research outputs found

    On the Application of Deformation Kinetics to Nonlinear Constitutive Relations at Higher Temperatures

    Get PDF
    A single phenomenological constitutive equation is derived theoretically from first principles and applied to aluminum, tin and lead. The theory is based on deformation kinetics of steady creep in which the fundamental mechanism is atomic transport over potential barriers whose conformation is distorted by the application of a stress field. The form of the functional dependence of barrier distortion and stress over the entire temperature range is found to be a sigmoidal curve which tends to straight lines of a unit slope in the small and high stress regions. With this form of barrier distortion, the constitutive equation prediction the steady creep behavior of aluminum, tin and lead over a wide range of temperature and stress

    Some Recent Developments in the Endochronic Theory with Application to Cyclic Histories

    Get PDF
    Constitutive equations with only two easily determined material constants predict the stress (strain) response of normalized mild steel to a variety of general strain (stress) histories, without a need for special unloading-reloading rules. The equations are derived from the endochronic theory of plasticity of isotropic materials with an intrinsic time scale defined in the plastic strain space. Agreement between theoretical predictions and experiments are are excellent quantitatively in cases of various uniaxial constant amplitude histories, variable uniaxial strain amplitude histories and cyclic relaxation. The cyclic ratcheting phenomenon is predicted by the present theory

    Semiempirical calculation of deep levels: divacancy in Si

    Get PDF
    A study of the electronic levels associated with the divacancy in silicon is reported. The extended Huckel theory is shown to reproduce the band structure of silicon. The electronic levels of the divacancy are calculated by considering a periodic array of large unit cells each containing 62 atoms; a 64 atom perfect cell with two atoms removed to form the divacancy. The results are found to be in qualitative agreement with the results of EPR and infrared absorption measurements

    Fully automatic telemetry data processor

    Get PDF
    Satellite Telemetry Automatic Reduction System /STARS 2/, a fully automatic computer-controlled telemetry data processor, maximizes data recovery, reduces turnaround time, increases flexibility, and improves operational efficiency. The system incorporates a CDC 3200 computer as its central element

    Coherence scale of the two-dimensional Kondo Lattice model

    Full text link
    A doped hole in the two-dimensional half-filled Kondo lattice model with exchange J and hopping t has momentum (pi,pi) irrespective of the coupling J/t. The quasiparticle residue of the doped hole, Z_{(\pi, \pi)}, tracks the Kondo scale, T_K, of the corresponding single impurity model. Those results stem from high precision quantum Monte Carlo simulations on lattices up to 12 X 12. Accounting for small dopings away from half-filling within a rigid band approximation, this result implies that the effective mass of the charge carriers at the Fermi level tracks 1/T_K or equivalently that the coherence temperature T_{coh} \propto T_K. This results is consistent with the large-N saddle point of the SU(N) symmetric Kondo lattice model.Comment: 4 pages, 4 figure

    Input filter compensation for switching regulators

    Get PDF
    The problems caused by the interaction between the input filter, output filter, and the control loop are discussed. The input filter design is made more complicated because of the need to avoid performance degradation and also stay within the weight and loss limitations. Conventional input filter design techniques are then dicussed. The concept of pole zero cancellation is reviewed; this concept is the basis for an approach to control the peaking of the output impedance of the input filter and thus mitigate some of the problems caused by the input filter. The proposed approach for control of the peaking of the output impedance of the input filter is to use a feedforward loop working in conjunction with feedback loops, thus forming a total state control scheme. The design of the feedforward loop for a buck regulator is described. A possible implementation of the feedforward loop design is suggested
    corecore