17 research outputs found

    Effect of few-walled carbon nanotube crystallinity on electron field emission property

    Get PDF
    We discuss the influence of few-walled carbon nanotubes (FWCNTs) treated with nitric acid and/or sulfuric acid on field emission characteristics. FWCNTs/tetraethyl orthosilicate (TEOS) thin film field emitters were fabricated by a spray method using FWCNTs/TEOS sol one-component solution onto indium tin oxide (ITO) glass. After thermal curing, they were found tightly adhered to the ITO glass, and after an activation process by a taping method, numerous FWCNTs were aligned preferentially in the vertical direction. Pristine FWCNT/ TEOS-based field emitters revealed higher current density, lower turn-on field, and a higher field enhancement factor than the oxidized FWCNTs-based field emitters. However, the unstable dispersion of pristine FWCNT in TEOS/N,N-dimethylformamide solution was not applicable to the field emitter fabrication using a spray method. Although the field emitter of nitric acid-treated FWCNT showed slightly lower field emission characteristics, this could be improved by the introduction of metal nanoparticles or resistive layer coating. Thus, we can conclude that our spray method using nitric acid-treated FWCNT could be useful for fabricating a field emitter and offers several advantages compared to previously reported techniques such as chemical vapor deposition and screen printing.ope

    Transcription factor YY1 is essential for regulation of the Th2 cytokine locus and for Th2 cell differentiation

    Get PDF
    The Th2 locus control region (LCR) has been shown to be important in efficient and coordinated cytokine gene regulation during Th2 cell differentiation. However, the molecular mechanism for this is poorly understood. To study the molecular mechanism of the Th2 LCR, we searched for proteins binding to it. We discovered that transcription factor YY1 bound to the LCR and the entire Th2 cytokine locus in a Th2-specific manner. Retroviral overexpression of YY1 induced Th2 cytokine expression. CD4-specific knockdown of YY1 in mice caused marked reduction in Th2 cytokine expression, repressed chromatin remodeling, decreased intrachromosomal interactions, and resistance in an animal model of asthma. YY1 physically associated with GATA-binding protein-3 (GATA3) and is required for GATA3 binding to the locus. YY1 bound to the regulatory elements in the locus before GATA3 binding. Thus, YY1 cooperates with GATA3 and is required for regulation of the Th2 cytokine locus and Th2 cell differentiation

    A strategy towards sustainable industry in Korea

    No full text
    노트 : To be presented at the 10th international conference of the Greening of Industry NetworkJune 23-26, Göteborg, Swede

    Supracondylar Fractures of the Femur

    No full text

    Spontaneous Generation of Molecular Thin Hydrophobic Skin Layer on Sub-20 nm, High-k Polymer Dielectric for Extremely Stable Organic Thin-Film Transistor (OTFT) Operation

    No full text
    Polymer dielectric materials with hydroxyl functionalities such as poly(4-vinylphenol) and poly(vinyl alcohol) been utilized widely in organic thin-film transistors (OTFTs) because of their excellent insulating performance gained by hydroxyl-mediated cross-linking. However, the polar hydroxyl functionality also deleteriously affects the performance of OTFTs and significantly impairs the device stability. In this study, a sub-20 nm, high-k copolymer dielectric with hydroxyl functionality, poly(2-hydroxyethyl acrylate-co-di(ethylene glycol) divinyl ether), was synthesized in the vapor phase via initiated chemical vapor deposition. The inherently dry environment offered by the vapor phase polymer synthesis prompted the snuggling of polar hydroxyl functionalities into the bulk polymer film to form a molecular thin hydrophobic skin layer at its surface, verified by near-edge X-ray absorption fine structure analysis. The chemical composition of the copolymer dielectric was optimized systematically to achieve high dielectric constant (k approximate to 6.2) as well as extremely low leakage current densities (less than 3 X 10(-8) A/cm(2) in the range of +/- 2 MV/cm) even with sub-20 nm thickness, leading to one of the highest capacitance (higher than 300 nF/cm(2)) achieved by a single polymer dielectric to date. Exploiting the structural advantage of the cross-linked high-k polymer dielectric, high-performance OTFTs were obtained. Notably, the spontaneously formed molecular thin, hydrophobic skin layer in the copolymer film substantially suppressed the hysteresis in the transistor operation. The trap analysis also suggested the formation of bulk trap with a high energy barrier and sufficiently low trap densities at the semiconductor/dielectric interface, owing to the surface skin layer. Furthermore, the OTFTs with the OH-containing copolymer dielectric showed an unprecedentedly excellent operational stability. No apparent OTFT degradation was observed up to 50 000 s of high constant voltage stress (corresponding to the applied electric field of 1.4 MV/cm) because of the markedly suppressed interfacial trap density by the hydrophobic skin layer, together with the current compensation by the bulk hydroxyl functionalities. We believe that the surface modification-free, one-step polymer dielectric synthetic strategy will provide a new insight into the design of polymer dielectric materials for high-performance, low-power soft electronic devices with high operational stability.11Nsciescopu

    Direct Observation of a Carbon Filament in Water-Resistant Organic Memory

    No full text
    The memory for the Internet of Things (IoT) requires versatile characteristics such as flexibility, wearability, and stability in outdoor environments. Resistive random access memory (RRAM) to harness a simple structure and organic material with good flexibility can be an attractive candidate for IoT memory. However, its solution-oriented process and unclear switching mechanism are critical problems. Here we demonstrate iCVD polymer-intercalated RRAM (i-RRAM). i-RRAM exhibits robust flexibility and versatile wearability on any substrate. Stable operation of i-RRAM, even in water, is demonstrated, which is the first experimental presentation of water-resistant organic memory without any waterproof protection package. Moreover, the direct observation of a carbon filament is also reported for the first time using transmission electron microscopy, which puts an end to the controversy surrounding the switching mechanism. Therefore, reproducibility is feasible through comprehensive modeling. Furthermore, a carbon filament is superior to a metal filament in terms of the design window and selection of the electrode material. These results suggest an alternative to solve the critical issues of organic RRAM and an optimized memory type suitable for the IoT era
    corecore