28 research outputs found

    Partition-Based GTS Adjustment for Wireless Sensor Networks

    Get PDF
    The personal area network (PAN) coordinator can assign a guaranteed time slot (GTS) to allocate a particular duration for requested devices in IEEE 802.15.4 beacon-enabled mode. The main challenge in the GTS mechanism is how to let the PAN coordinator allocate time slot duration for the devices which request a GTS. If the allocated devices use the GTS partially or the traffic pattern is not suitable, wasted bandwidth will increase, which degrades the performance of the network. In order to overcome the abovementioned problem, this paper proposes the Partitioned GTS Allocation Scheme (PEGAS) for IEEE 802.15.4 networks. PEGAS aims to decide the precise moment for the starting time, the end, and the length of the GTS allocation for requested devices taking into account the values of the superframe order, superframe duration, data packet length, and arrival data packet rate. Our simulation results showed that the proposed mechanism outperforms the IEEE 802.15.4 standard in terms of the total number of transmitted packets, throughput, energy efficiency, latency, bandwidth utilization, and contention access period (CAP) length ratio

    Study on Additional Carrier Sensing for IEEE 802.15.4 Wireless Sensor Networks

    Get PDF
    Wireless sensor networks based on the IEEE 802.15.4 standard are able to achieve low-power transmissions in the guise of low-rate and short-distance wireless personal area networks (WPANs). The slotted carrier sense multiple access with collision avoidance (CSMA/CA) is used for contention mechanism. Sensor nodes perform a backoff process as soon as the clear channel assessment (CCA) detects a busy channel. In doing so they may neglect the implicit information of the failed CCA detection and further cause the redundant sensing. The blind backoff process in the slotted CSMA/CA will cause lower channel utilization. This paper proposes an additional carrier sensing (ACS) algorithm based on IEEE 802.15.4 to enhance the carrier sensing mechanism for the original slotted CSMA/CA. An analytical Markov chain model is developed to evaluate the performance of the ACS algorithm. Both analytical and simulation results show that the proposed algorithm performs better than IEEE 802.15.4, which in turn significantly improves throughput, average medium access control (MAC) delay and power consumption of CCA detection

    A traffic shedding algorithm for soft-handoff in MC-CDMA systems

    No full text

    VoIP services with embedded CAC over cable modem systems

    No full text

    An Enhanced Hybrid Rerouting Scheme for Handoff in Wireless ATM Networks

    No full text
    Abstract. For handoff in wireless ATM networks, a call might be rerouted because ATM basically provides connection-oriented service. We propose an enhanced hybrid rerouting scheme (EHRS) for handoff in wireless ATM networks, which combines the concepts of multicast rerouting, anchor rerouting, path extension and dynamic rerouting methods to effectively reduce handoff call dropping ratio, new call blocking ratio, and handoff delay. An analytical model and simulation experiments obtain performance measurements. According to the results, EHRS performs better than the different schemes

    High sensitivity wake-up radio using spreading codes: design, evaluation, and applications

    Get PDF
    Most of the published wake-up radios propose low energy design at the expense of reduced radio range, which means that they require an increased deployment density of sensor networks. In this article, we introduce a design of a high sensitivity 916.5 MHz wake-up radio using low data rate and forward error correction (FEC). It improves the sensitivity, up to -122 dBm at a data rate 370 bit/s. It achieves up to 13 dB of coding gain with symbol error rate (SER) 10-2, and up to 4 times the range of the data radio, rendering it more suitable to sensor networks. Our design can receive wake-up signal reliably from any IEEE 802.15.4 transmitter and achieves a low packet error rate (PER) 0.0159 at SNR 4 dB. Furthermore, our design encodes the node ID into a wake-up signal to avoid waking up the undesired nodes. © 2011, Shih et al; licensee Springer
    corecore