49 research outputs found

    Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes

    Get PDF
    Type 2 diabetes (T2D) is a very common disease in humans. Here we conduct a meta-analysis of genome-wide association studies (GWAS) with ~16 million genetic variants in 62,892 T2D cases and 596,424 controls of European ancestry. We identify 139 common and 4 rare variants associated with T2D, 42 of which (39 common and 3 rare variants) are independent of the known variants. Integration of the gene expression data from blood (n = 14,115 and 2765) with the GWAS results identifies 33 putative functional genes for T2D, 3 of which were targeted by approved drugs. A further integration of DNA methylation (n = 1980) and epigenomic annotation data highlight 3 genes (CAMK1D, TP53INP1, and ATP5G1) with plausible regulatory mechanisms, whereby a genetic variant exerts an effect on T2D through epigenetic regulation of gene expression. Our study uncovers additional loci, proposes putative genetic regulatory mechanisms for T2D, and provides evidence of purifying selection for T2D-associated variants

    Cell Specific eQTL Analysis without Sorting Cells

    Get PDF
    The functional consequences of trait associated SNPs are often investigated using expression quantitative trait locus (eQTL) mapping. While trait-associated variants may operate in a cell-type specific manner, eQTL datasets for such cell-types may not always be available. We performed a genome-environment interaction (GxE) meta-analysis on data from 5,683 samples to infer the cell type specificity of whole blood cis-eQTLs. We demonstrate that this method is able to predict neutrophil and lymphocyte specific cis-eQTLs and replicate these predictions in independent cell-type specific datasets. Finally, we show that SNPs associated with Crohn’s disease preferentially affect gene expression within neutrophils, including the archetypal NOD2 locus

    Cell Specific eQTL Analysis without Sorting Cells

    Get PDF
    The functional consequences of trait associated SNPs are often investigated using expression quantitative trait locus (eQTL) mapping. While trait-associated variants may operate in a cell-type specific manner, eQTL datasets for such cell-types may not always be available. We performed a genome-environment interaction (GxE) meta-analysis on data from 5,683 samples to infer the cell type specificity of whole blood cis-eQTLs. We demonstrate that this method is able to predict neutrophil and lymphocyte specific cis-eQTLs and replicate these predictions in independent cell-type specific datasets. Finally, we show that SNPs associated with Crohn's disease preferentially affect gene expression within neutrophils, including the archetypal NOD2 locus.Peer reviewe

    Cell Specific eQTL Analysis without Sorting Cells

    Get PDF
    The functional consequences of trait associated SNPs are often investigated using expression quantitative trait locus (eQTL) mapping. While trait-associated variants may operate in a cell-type specific manner, eQTL datasets for such cell-types may not always be available. We performed a genome-environment interaction (GxE) meta-analysis on data from 5,683 samples to infer the cell type specificity of whole blood cis-eQTLs. We demonstrate that this method is able to predict neutrophil and lymphocyte specific cis-eQTLs and replicate these predictions in independent cell-type specific datasets. Finally, we show that SNPs associated with Crohn's disease preferentially affect gene expression within neutrophils, including the archetypal NOD2 locus.Peer reviewe

    A constant pool of Lgr5+ intestinal stem cells is required for intestinal homeostasis

    No full text
    Lgr5+ crypt base columnar cells, the operational intestinal stem cells (ISCs), are thought to be dispensable for small intestinal (SI) homeostasis. Using a Lgr5-2A-DTR (diphtheria toxin receptor) model, which ablates Lgr5+ cells with near-complete efficiency and retains endogenous levels of Lgr5 expression, we show that persistent depletion of Lgr5+ ISCs in fact compromises SI epithelial integrity and reduces epithelial turnover in vivo. In vitro, Lgr5-2A-DTR SI organoids are unable to establish or survive when Lgr5+ ISCs are continuously eliminated by adding DT to the media. However, transient exposure to DT at the start of culture allows organoids to form, and the rate of outgrowth reduces with the increasing length of DT presence. Our results indicate that intestinal homeostasis requires a constant pool of Lgr5+ ISCs, which is supplied by rapidly reprogrammed non-Lgr5+ crypt populations when preexisting Lgr5+ ISCs are ablated.Agency for Science, Technology and Research (A*STAR)National Research Foundation (NRF)Published versionThe authors thank IMB-IMU and the SBIC-Nikon Imaging Centre staff for imaging assistance; K. Murad for assistance with the experiments; G. Lim for manuscript assistance; and F. de Sauvage for providing the Lgr5-DTR-EGFP mice. N.B. is supported by the Agency for Science, Technology and Research (A ∗ Star) , the Japan Society for the Promotion of Science (JSPS) KAKENHI grant no. 17H01399 , and the National Research Foundation Singapore (Investigatorship Program award no. NRF-NRF12017-03 )
    corecore