12 research outputs found

    A Macromolecular Approach to Eradicate Multidrug Resistant Bacterial Infections while Mitigating Drug Resistance Onset

    Get PDF
    Polymyxins remain the last line treatment for multidrug-resistant (MDR) infections. As polymyxins resistance emerges, there is an urgent need to develop effective antimicrobial agents capable of mitigating MDR. Here, we report biodegradable guanidinium-functionalized polycarbonates with a distinctive mechanism that does not induce drug resistance. Unlike conventional antibiotics, repeated use of the polymers does not lead to drug resistance. Transcriptomic analysis of bacteria further supports development of resistance to antibiotics but not to the macromolecules after 30 treatments. Importantly, high in vivo treatment efficacy of the macromolecules is achieved in MDR A. baumannii-, E. coli-, K. pneumoniae-, methicillin-resistant S. aureus-, cecal ligation and puncture-induced polymicrobial peritonitis, and P. aeruginosa lung infection mouse models while remaining non-toxic (e.g., therapeutic index—ED50/LD50: 1473 for A. baumannii infection). These biodegradable synthetic macromolecules have been demonstrated to have broad spectrum in vivo antimicrobial activity, and have excellent potential as systemic antimicrobials against MDR infections

    Formation of Disk- and Stacked-Disk-like Self-Assembled Morphologies from Cholesterol-Functionalized Amphiphilic Polycarbonate Diblock Copolymers

    No full text
    A cholesterol-functionalized aliphatic cyclic carbonate monomer, 2-(5-methyl-2-oxo-1,3-dioxane-5-carboxyloyloxy)­ethyl carbamate (MTC-Chol), was synthesized. The organocatalytic ring-opening polymerization of MTC-Chol was accomplished by using <i>N</i>-(3,5-trifluoromethyl)­phenyl-<i>N</i>′-cyclohexylthiourea (TU) in combinations with bases such as 1,8-diazabicyclo[5.4.0]­undec-7-ene (DBU) and (−)-sparteine, and kinetics of polymerization was monitored. By using mPEG-OH as the macroinitiator, well-defined amphiphilic diblock copolymers mPEG<sub>113</sub>-<i>b</i>-P­(MTC-Chol)<sub><i>n</i></sub> (<i>n</i> = 4 and 11) were synthesized. Under aqueous conditions, these block copolymers self-assembled to form unique nanostructures. Disk-like micelles and stacked-disk morphology were observed for mPEG<sub>113</sub>-<i>b</i>-P­(MTC-Chol)<sub>4</sub> and mPEG<sub>113</sub>-<i>b</i>-P­(MTC-Chol)<sub>11</sub>, respectively, by transmission electron microscopy (TEM). Small-angle neutron scattering supports the disk-like morphology and estimates the block copolymer micelle aggregation number in the dispersed solution. The hydrophobic nature of the cholesterol-containing block provides a versatile self-assembly handle to form complex nanostructures using biodegradable and biocompatible polymers for applications in drug delivery

    Biodegradable Block Copolyelectrolyte Hydrogels for Tunable Release of Therapeutics and Topical Antimicrobial Skin Treatment

    No full text
    Biodegradable polycarbonate-based ABA triblock copolyelectrolytes were synthesized and formulated into physically cross-linked hydrogels. These biocompatible, cationically, and anionically charged hydrogel materials exhibited pronounced shear-thinning behavior, making them useful for a variety of biomedical applications. For example, we investigated the antimicrobial activity of positively charged thiouronium functionalized hydrogels by microbial growth inhibition assays against several clinically relevant Gram-negative and Gram-positive bacteria. It is noteworthy that these hydrogels exhibited broad spectrum killing efficiencies approaching 100%, thereby rendering these thixotropic materials attractive for treatment of skin and other surface bound infections. Finally, cationic trimethylammonium containing hydrogels and anionic carboxylic acid functionalized hydrogels were utilized to sustain the release of negatively charged (diclofenac) and positively charged (vancomycin) therapeutics, respectively. Collectively, the present work introduces a simple method for formulating charged hydrogel materials that are capable of interacting with various analytes of interest through noncovalent interactions

    Biodegradable Strain-Promoted Click Hydrogels for Encapsulation of Drug-Loaded Nanoparticles and Sustained Release of Therapeutics

    No full text
    Biodegradable polycarbonate-based ABA triblock copolymers were synthesized via organocatalyzed ring-opening polymerization and successfully formulated into chemically cross-linked hydrogels by strain-promoted alkyne–azide cycloaddition (SPAAC). The synthesis and cross-linking of these polymers are copper-free, thereby eliminating the concern over metallic contaminants for biomedical applications. Gelation occurs rapidly within a span of 60 s by simple mixing of the azide- and cyclooctyne-functionalized polymer solutions. The resultant hydrogels exhibited pronounced shear-thinning behavior and could be easily dispensed through a 22G hypodermic needle. To demonstrate the usefulness of these gels as a drug delivery matrix, doxorubicin (DOX)-loaded micelles prepared using catechol-functionalized polycarbonate copolymers were incorporated into the polymer solutions to eventually form micelle/hydrogel composites. Notably, the drug release rate from the hydrogels was significantly more gradual compared to the solution formulation. DOX release from the micelle/hydrogel composites could be sustained for 1 week, while the release from the micelle solution was completed rapidly within 6 h of incubation. Cellular uptake of the released DOX from the micelle/hydrogel composites was observed at 3 h of incubation of human breast cancer MDA-MB-231 cells. A blank hydrogel containing PEG-(Cat)<sub>12</sub> micelles showed almost negligible toxicity on MDA-MB-231cells where cell viability remained high at >80% after treatment. When the cells were treated with the DOX-loaded micelle/hydrogel composites, there was a drastic reduction in cell viability with only 25% of cells surviving the treatment. In all, this study introduces a simple method of formulating hydrogel materials with incorporated micelles for drug delivery applications

    Injectable Coacervate Hydrogel for Delivery of Anticancer Drug-Loaded Nanoparticles in vivo

    No full text
    In this study, bortezomib (BTZ, a cytotoxic water-insoluble anticancer drug) was encapsulated in micellar nanoparticles having a catechol-functionalized polycarbonate core through a pH-sensitive covalent bond between phenylboronic acid (PBA) in BTZ and catechol, and these drug-loaded micelles were incorporated into hydrogels to form micelle/hydrogel composites. A series of injectable, biodegradable hydrogels with readily tunable mechanical properties were formed and optimized for sustained delivery of the BTZ-loaded micelles through ionic coacervation between PBA-functionalized polycarbonate/poly­(ethylene glycol) (PEG) “ABA” triblock copolymer and a cationic one having guanidinium- or thiouronium-functionalized polycarbonate as “A” block. An in vitro release study showed the pH dependence in BTZ release. At pH 7.4, the BTZ release from the micelle/hydrogel composite remained low at 7%, whereas in an acidic environment, ∼85% of BTZ was released gradually over 9 days. In vivo studies performed in a multiple myeloma MM.1S xenograft mouse model showed that the tumor progression of mice treated with BTZ-loaded micelle solution was similar to that of the control group, whereas those treated with the BTZ-loaded micelle/hydrogel composite resulted in significant delay in the tumor progression. The results demonstrate that this hydrogel has great potential for use in subcutaneous and sustained delivery of drug-loaded micelles with superior therapeutic efficacy

    Self-Assembled, Biodegradable Magnetic Resonance Imaging Agents: Organic Radical-Functionalized Diblock Copolymers

    No full text
    We report the design, synthesis, and evaluation of biodegradable amphiphilic poly­(ethylene glycol)-<i>b</i>-polycarbonate-based diblock copolymers containing pendant persistent organic radicals (e.g., PROXYL). These paramagnetic radical-functionalized polymers self-assemble into micellar nanoparticles in aqueous media, which preferentially accumulate in tumor tissue via the enhanced permeability and retention (EPR) effect. Through <i>T</i><sub>1</sub> relaxation NMR studies, as well as magnetic resonance imaging (MRI) studies on mice, we show that these nanomaterials are effective as metal-free, biodegradable MRI contrast agents. We also demonstrate anticancer drugs can be readily loaded into the nanoparticles, conferring therapeutic delivery properties in addition to their imaging properties making these materials potential theranostic agents in the treatment of cancer
    corecore