969 research outputs found

    Symmetry determination following structure solution in P1

    Get PDF
    A new method for space-group determination is described. It is based on a symmetry analysis of the structure-factor phases resulting from a structure solution in space group P1. The output of the symmetry analysis is a list of all symmetry operations compatible with the lattice. Each symmetry operation is assigned a symmetry agreement factor that is used to select the symmetry operations that are the elements of the space group of the structure. On the basis of the list of the selected operations the complete space group of the structure is constructed. The method is independent of the number of dimensions, and can also be used in solution of aperiodic structures. A number of cases are described where this method is particularly advantageous compared with the traditional symmetry analysis

    Stability and solid-state polymerization reactivity of imidazolyl- and benzimidazolyl-substituted diacetylenes: pivotal role of lattice water

    Get PDF
    International audience1,6-Bis(1-imidazolyl)-2,4-hexadiyne (1) and1,6-bis(1-benzimidazolyl)-2,4-hexadiyne (5) have beenpreparedby a novel method that consists in refluxing excess imidazole and benzimidazole with 2,4-hexadiyne-1,6-diol bis(p-toluenesulfonate),pTS (3). This procedure is a viable alternative to the widely used Hay coupling protocol in case the target diyne possesses substituents capable of deactivating the copper catalyst by complexation. Diyne1crystallizes as a hydrate,1?H2O(2). For this compound, water is essential toachieve a crystalline material, and attempts to obtain crystals without included solvent were unsuccessful. In the structure of2, the organic fragments organize around the water molecule and interact with it through a dense network of hydrogen bonds. The CMC-CMC moieties are not oriented suitably for topochemical polymerization, and when trying to alter the organizationof the crystal by heating so as to induce polymerization, water is lost in an abrupt fashion that leads to instantaneous decomposition into polyaromatic-like species. Similar results were observed when water was removedin vacuo at room temperature. The benzimidazole-containing compound can be crystallized with water molecules (4)orwithout(5). X-ray crystallography shows that the structure of 5is organized by numerous C-H...N, C-H...p,andimidazolyl...imidazolyl p-p interactions. The diacetylene molecules almost have the right arrangement for topochemical polymerization, withpossibly reactingCMC-CMC fragments not beingparallel, a rare situation indiacetylene chemistry. Yet, experiments showthat topochemical polymerizationdoes not occur. Incorporationofwater in the lattice of5leads toa solvate that is topochemically reactive. Unlike2, however, water molecules in 4are not isolated but are organized as ribbons. Spectroscopic characterization of the polymer of4indicates that it is a blue phase polymer, with water coordinated to it. This study shows that it is possible to use water, and more generally solvent molecules, to transform a nonreactive diacetylene into a reactive one, even though this approach is less predictable than the cocrystal approach developed by Fowler, Lauher, and Goroff. The solvate approach is simple to implement, quite versatile because of the large rangeof solvents available, andonedoes not face theproblemof having to remove the host in case one needs to recover the polymer. Previous studies describing a similar approach are scarce

    Two new X

    Full text link

    Bis[Ό-1-hexyl-3-(2,3,5,6,8,9,11,12-octa­hydro-1,4,7,10,13-benzopenta­oxacyclo­penta­decin-15-yl)urea]bis­(azido­sodium) chloro­form disolvate

    Get PDF
    In the title compound, [Na2(N3)2(C21H34N2O6)2]·2CHCl3, the sodium cation is hepta­coordinated by five O atoms of the crown ether unit of the 1-hexyl-3-(2,3,5,6,8,9,11,12-octa­hydro-1,4,7,10,13-benzopenta­oxacyclo­penta­decin-15-yl)urea (L) ligand, the O atom of the urea group of the second, symmetry-related L ligand, and one N atom of the azide anion. The experimentally determined distance 2.472 (2) Å between the terminal azide N atom and the sodium cation is substanti­ally longer than that predicted from density functional theory (DFT) calculations (2.263 Å). The crown ethers complexing the sodium cation are related by an inversion centre and form dimers. The urea groups of the two L ligands are connected in a head-to-tail fashion by classical N—H⋯N hydrogen-bonding inter­actions and form a ribbon-like structure parallel to the b axis. Parallel ribbons are weakly linked through C—H⋯N, C—H⋯O and C—Hâ‹ŻÏ€ inter­actions

    Ausarbeitung eines Praktikumsversuchs zur Ermittlung des Losbrech- moments unterschiedlicher Schraubensicherungen

    Get PDF
    Im Rahmen der Lehrveranstaltung Maschinenelemente 2 wird ein neuer Praktikumsversuch zum Thema Schraubenverbindung erarbeitet. Dieser soll die Eigenschaften verschiedener Schrauben, Muttern und Sicherungselementen auf das Anzugs- und Losbrechmoment verdeutlichen. Grundlage dieses Versuchs ist der Versuchsaufbau Schraubenverbindungen der Fa. Gunt. In diesem Praktikum wird hauptsĂ€chlich die Eigenschaften verschiedener Schraubensicherungen untersucht. Mit gleichem Anzugsmoment, welche Schraubensicherung wirksam ist und was die BegrĂŒndung und Prinzip dieser Schraubensicherung sind

    Infection of zebrafish embryos with live fluorescent Streptococcus pneumoniae as a real-time pneumococcal meningitis model

    Get PDF
    Background: Streptococcus pneumoniae is one of the most important causes of bacterial meningitis, an infection where unfavourable outcome is driven by bacterial and host-derived toxins. In this study, we developed and characterized a pneumococcal meningitis model in zebrafish embryos that allows for real-time investigation of early host-microbe interaction. Methods: Zebrafish embryos were infected in the caudal vein or hindbrain ventricle with green fluorescent wild-type S. pneumoniae D39 or a pneumolysin-deficient mutant. The kdrl:mCherry transgenic zebrafish line was used to visualize the blood vessels, whereas phagocytic cells were visualized by staining with far red anti-L-plastin or in mpx:GFP/mpeg1:mCherry zebrafish, that have green fluorescent neutrophils and red fluorescent macrophages. Imaging was performed by fluorescence confocal and time-lapse microscopy. Results: After infection by caudal vein, we saw focal clogging of the pneumococci in the blood vessels and migration of bacteria through the blood-brain barrier into the subarachnoid space and brain tissue. Infection with pneumolysin-deficient S. pneumoniae in the hindbrain ventricle showed attenuated growth and migration through the brain as compared to the wild-type strain. Time-lapse and confocal imaging revealed that the initial innate immune response to S. pneumoniae in the subarachnoid space mainly consisted of neutrophils and that pneumolysin-mediated cytolytic activity caused a marked reduction of phagocytes. Conclusions: This new meningitis model permits detailed analysis and visualization of host-microbe interaction in pneumococcal meningitis in real time and is a very promising tool to further our insights in the pathogenesis of pneumococcal meningitis

    Structural Odd–Even Effect Impacting the Dimensionality of Transport in BTBT‐CnOH Organic Field Effect Transistors

    Get PDF
    The synthesis and characterization of a series of [1]benzothieno[3,2-b][1]benzothiophene (BTBT) molecules disubstituted by hydroxy aliphatic chains in positions 2 and 7 (BTBT-CnOH), where the intralayer molecular stacking alternates between a classical and an inverted herringbone mode as a function of whether the alkyl sides chains have an even or an odd number of carbon atoms are reported. This odd–even effect does not only affect the interlayer distance of the lamellar structures and the melting points, but also the electronic properties. The BTBT-CnOH odd series develops a classical herringbone pattern with edge-to-edge S⋯S interaction chains linked together by face-to-edge S⋯S interaction chains with 2D mobility. However, the even series has only edge-to-edge interactions in an inverted herringbone organization and thus only a 1D conducting character. These two types of herringbone patterns have different field effect transistor characteristics and mobilities, those of the odd members being systematically higher than their even neighbors. This is the first example of an odd–even effect impacting the electronic properties of an organic semiconductor.Modules solaires photovoltaĂŻques organiques de grande surface Ă  hauts rendements stabilisĂ©

    Self-mineralization and assembly of a bis-silylated Phe–Phe pseudodipeptide to a structured bioorganic–inorganic material

    Get PDF
    International audienceSelf-mineralization of trialkoxysilyl hybrid peptide yield in a single step a nanostructured hybrid material. A bis-silylated pseudodipeptide inspired from the Phe-Phe dipeptide was used to program the assembly by sol-gel polymerization in heterogeneous conditions, in water at pH 1.5 without any structure-directing agent. A mechanism deciphering the hybrid material assembly was proposed thanks to 1H NMR spectroscopy. First, water-insoluble hybrid building blocks were hydrolysed into their soluble silanol counterparts. Then, these transitional species, thanks to hydrogen bonding and π-π stacking, self-assembled in solution. Last, the proximity of silanol moieties favoured their polycondensation into growing siloxane oligomers, which spontaneously precipitated to produce an ordered hybrid material
    • 

    corecore