2,934 research outputs found

    Crop weather models of barley and spring wheat yield for agrophysical units in North Dakota

    Get PDF
    Models based on multiple regression were developed to estimate barley yield and spring wheat yield from weather data for Agrophysical units(APU) in North Dakota. The predictor variables are derived from monthly average temperature and monthly total precipitation data at meteorological stations in the cooperative network. The models are similar in form to the previous models developed for Crop Reporting Districts (CRD). The trends and derived variables were the same and the approach to select the significant predictors was similar to that used in developing the CRD models. The APU models show sight improvements in some of the statistics of the models, e.g., explained variation. These models are to be independently evaluated and compared to the previously evaluated CRD models. The comparison will indicate the preferred model area for this application, i.e., APU or CRD

    Large Area Crop Inventory Experiment (LACIE). Yield-weather regression models for the Canadian prairies

    Get PDF
    There are no author-identified significant results in this report

    Estimating solar radiation for plant simulation models

    Get PDF
    Five algorithms producing daily solar radiation surrogates using daily temperatures and rainfall were evaluated using measured solar radiation data for seven U.S. locations. The algorithms were compared both in terms of accuracy of daily solar radiation estimates and terms of response when used in a plant growth simulation model (CERES-wheat). Requirements for accuracy of solar radiation for plant growth simulation models are discussed. One algorithm is recommended as being best suited for use in these models when neither measured nor satellite estimated solar radiation values are available

    Accurate determination of the scattering length of metastable Helium atoms using dark resonances between atoms and exotic molecules

    Full text link
    We present a new measurement of the s-wave scattering length a of spin-polarized helium atoms in the 2^3S_1 metastable state. Using two-photon photoassociation spectroscopy and dark resonances we measure the energy E_{v=14}= -91.35 +/- 0.06 MHz of the least bound state v=14 in the interaction potential of the two atoms. We deduce a value of a = 7.512 +/- 0.005 nm, which is at least one hundred times more precise than the best previous determinations and is in disagreement with some of them. This experiment also demonstrates the possibility to create exotic molecules binding two metastable atoms with a lifetime of the order of 1 microsecond.Comment: 4 pages, 4 figure

    Large Area Crop Inventory Experiment (LACIE). USSR spring and winter wheat models, addendum

    Get PDF
    There are no author-identified significant results in this report

    Crop weather models of corn and soybeans for Agrophysical Units (APU's) in Iowa using monthly meteorological predictors

    Get PDF
    Models based on multiple regression were developed to estimate corn and soybean yield from weather data for agrophysical units (APU) in Iowa. The predictor variables are derived from monthly average temperature and monthly total precipitation data at meteorological stations in the cooperative network. The models are similar in form to the previous models developed for crop reporting districts (CRD). The trends and derived variables were the same and the approach to select the significant predictors was similar to that used in developing the CRD models. The APU's were selected to be more homogeneous with respect crop to production than the CRDs. The APU models are quite similar to the CRD models, similar explained variation and number of predictor variables. The APU models are to be independently evaluated and compared to the previously evaluated CRD models. That comparison should indicate the preferred model area for this application, i.e., APU or CRD

    Insulator interface effects in sputter‐deposited NbN/MgO/NbN (superconductor–insulator–superconductor) tunnel junctions

    Get PDF
    All refractory, NbN/MgO/NbN (superconductor–insulator–superconductor) tunnel junctions have been fabricated by in situ sputter deposition. The influence of MgO thickness (0.8–6.0 nm) deposited under different sputtering ambients at various deposition rates on current–voltage (I–V) characteristics of small‐area (30×30 μm) tunnel junctions is studied. The NbN/MgO/NbN trilayer is deposited in situ by dc reactive magnetron (NbN), and rf magnetron (MgO) sputtering, followed by thermal evaporation of a protective Au cap. Subsequent photolithography, reactive ion etching, planarization, and top contact (Pb/Ag) deposition completes the junction structure. Normal resistance of the junctions with MgO deposited in Ar or Ar and N2 mixture shows good exponential dependence on the MgO thickness indicating formation of a pin‐hole‐free uniform barrier layer. Further, a postdeposition in situ oxygen plasma treatment of the MgO layer increases the junction resistance sharply, and reduces the subgap leakage. A possible enrichment of the MgO layer stoichiometry by the oxygen plasma treatment is suggested. A sumgap as high as 5.7 mV is observed for such a junctio

    Comparison of the CEAS and Williams-type barley yield models for North Dakota and Minnesota

    Get PDF
    The CEAS and Williams type models were compared based on specified selection criteria which includes a ten year bootstrap test (1970-1979). Based on this, the models were quite comparable; however, the CEAS model was slightly better overall. The Williams type model seemed better for the 1974 estimates. Because that year spring wheat yield was particularly low, the Williams type model should not be excluded from further consideration

    Thin-film chemical sensors based on electron tunneling

    Get PDF
    The physical mechanisms underlying a novel chemical sensor based on electron tunneling in metal-insulator-metal (MIM) tunnel junctions were studied. Chemical sensors based on electron tunneling were shown to be sensitive to a variety of substances that include iodine, mercury, bismuth, ethylenedibromide, and ethylenedichloride. A sensitivity of 13 parts per billion of iodine dissolved in hexane was demonstrated. The physical mechanisms involved in the chemical sensitivity of these devices were determined to be the chemical alteration of the surface electronic structure of the top metal electrode in the MIM structure. In addition, electroreflectance spectroscopy (ERS) was studied as a complementary surface-sensitive technique. ERS was shown to be sensitive to both iodine and mercury. Electrolyte electroreflectance and solid-state MIM electroreflectance revealed qualitatively the same chemical response. A modified thin-film structure was also studied in which a chemically active layer was introduced at the top Metal-Insulator interface of the MIM devices. Cobalt phthalocyanine was used for the chemically active layer in this study. Devices modified in this way were shown to be sensitive to iodine and nitrogen dioxide. The chemical sensitivity of the modified structure was due to conductance changes in the active layer
    corecore