4,233 research outputs found

    Fabrication and characterization of high current-density, submicron, NbN/MgO/NbN tunnel junctions

    Get PDF
    At near-millimeter wavelengths, heterodyne receivers based on SIS tunnel junctions are the most sensitive available. However, in order to scale these results to submillimeter wavelengths, certain device properties should be scaled. The tunnel-junction's current density should be increased to reduce the RC product. The device's area should be reduced to efficiently couple power from the antenna to the mixer. Finally, the superconductor used should have a large energy gap to minimize RF losses. Most SIS mixers use Nb or Pb-alloy tunnel junctions; the gap frequency for these materials is approximately 725 GHz. Above the gap frequency, these materials exhibit losses similar to those in a normal metal. The gap frequency in NbN films is as-large-as 1440 GHz. Therefore, we have developed a process to fabricate small area (down to 0.13 sq microns), high current density, NbN/MgO/NbN tunnel junctions

    Large Area Crop Inventory Experiment (LACIE). USSR spring and winter wheat models, addendum

    Get PDF
    There are no author-identified significant results in this report

    The millimeter-wave properties of superconducting microstrip lines

    Get PDF
    We have developed a novel technique for making high quality measurements of the millimeter-wave properties of superconducting thin-film microstrip transmission lines. Our experimental technique currently covers the 75-100 GHz band. The method is based on standing wave resonances in an open ended transmission line. We obtain information on the phase velocity and loss of the microstrip. Our data for Nb/SiO/Nb lines, taken at 4.2 K and 1.6 K, can be explained by a single set of physical parameters. Our preliminary conclusion is that the loss is dominated by the SiO dielectric, with a temperature-independent loss tangent of 5.3 ± 0.5 x 10^(-3) for our samples

    Development of Low Noise THz SIS Mixer Using an Array of Nb/Al-AlN/NbTiN Junctions

    Get PDF
    We report the development of a low noise and broadband SIS mixer aimed for 1 THz channel of the Caltech Airborne Submillimeter Interstellar Medium Investigations Receiver (CASIMIR), designed for the Stratospheric Observatory for Infrared Astronomy, (SOFIA). The mixer uses an array of two 0.24 mum^2 Nb/Al-AlN/NbTiN SIS junctions with the critical current density of 30-50 kA/cm^2 . An on-chip double slot planar antenna couples the mixer circuit with the telescope beam. The mixer matching circuit is made with Nb and gold films. The mixer IF circuit is designed to cover 4-8 GHz band. A test receiver with the new mixer has a low noise operation in 0.87-1.12 THz band. The minimum receiver noise measured in our experiment is 353 K (Y = 1.50). The receiver noise corrected for the loss in the LO injection beam splitter is 250 K. The combination of a broad operation band of about 250 GHz with a low receiver noise makes the new mixer a useful element for application at SOFIA

    Low Noise 1 THz–1.4 THz Mixers Using Nb/Al-AlN/NbTiN SIS Junctions

    Get PDF
    We present the development of a low noise 1.2 THz and 1.4 THz SIS mixers for heterodyne spectrometry on the Stratospheric Observatory For Infrared Astronomy (SOFIA) and Herschel Space Observatory. This frequency range is above the limit for the commonly used Nb quasi particle SIS junctions, and a special type of hybrid Nb/AlN/NbTiN junctions has been developed for this project.We are using a quasi-optical mixer design with two Nb/AlN/NbTiN junctions with an area of 0.25 µm^2. The SIS junction tuning circuit is made of Nb and gold wire layers. At 1.13 THz the minimum SIS receiver uncorrected noise temperature is 450 K. The SIS receiver noise corrected for the loss in the LO coupler and in the cryostat optics is 350–450 K across 1.1–1.25 THz band. The receiver has a uniform sensitivity in a full 4–8 GHz IF band. The 1.4 THz SIS receiver test at 1.33–1.35 THz gives promising results, although limited by the level of available LO power. Extrapolation of the data obtained with low LO power level shows a possibility to reach 500 K DSB receiver noise using already existing SIS mixer

    Characterization of low-noise quasi-optical SIS mixers for the submillimeter band

    Get PDF
    We report on the development of low-noise quasi-optical SIS mixers for the frequency range 400-850 GHz. The mixers utilize twin-slot antennas, two-junction tuning circuits, and Nb-trilayer junctions. Fourier-transform spectrometry has been used to verify that the frequency response of the devices is well predicted by computer simulations. The 400-850 GHz frequency band can be covered with four separate fixed-tuned mixers. We measure uncorrected double-sideband receiver noise temperatures around 5hν/kB to 700 GHz, and better than 540 K at 808 GHz. These results are among the best reported to date for broadband heterodyne receivers

    Measurements of noise in Josephson-effect mixers

    Get PDF
    We present new heterodyne receiver results obtained at 100 GHz using resistively-shunted Nb and NbN tunnel junctions. In addition, we have carried out accurate measurements of the available noise power of these devices at the L-band (1.5 GHz) IF frequency. Both the heterodyne and the output noise measurements show that the noise of these devices can be a factor of five or more higher than that predicted by the simple current-biased RSJ model. The noise approaches the appropriate thermal or thermal and shot noise limits for bias voltages where the nonlinearity is not strong (i.e., V>ICRN), but as expected from the RSJ model, can be significantly higher at the low voltages where the mixers are typically biased. The bias voltage dependence of the noise shows structure which is associated with resonances in the RF embedding circuit. Surprisingly, we find that changes in the high-frequency (100 GHz) impedance presented to the junction can dramatically affect the magnitude and voltage dependence of the low-frequency (1.5 GHz) noise. This emphasizes the necessity of very closely matching the junction to free space over a wide frequency range
    corecore