2,695 research outputs found

    Accurate determination of the scattering length of metastable Helium atoms using dark resonances between atoms and exotic molecules

    Full text link
    We present a new measurement of the s-wave scattering length a of spin-polarized helium atoms in the 2^3S_1 metastable state. Using two-photon photoassociation spectroscopy and dark resonances we measure the energy E_{v=14}= -91.35 +/- 0.06 MHz of the least bound state v=14 in the interaction potential of the two atoms. We deduce a value of a = 7.512 +/- 0.005 nm, which is at least one hundred times more precise than the best previous determinations and is in disagreement with some of them. This experiment also demonstrates the possibility to create exotic molecules binding two metastable atoms with a lifetime of the order of 1 microsecond.Comment: 4 pages, 4 figure

    Large Area Crop Inventory Experiment (LACIE). USSR spring and winter wheat models, addendum

    Get PDF
    There are no author-identified significant results in this report

    The millimeter-wave properties of superconducting microstrip lines

    Get PDF
    We have developed a novel technique for making high quality measurements of the millimeter-wave properties of superconducting thin-film microstrip transmission lines. Our experimental technique currently covers the 75-100 GHz band. The method is based on standing wave resonances in an open ended transmission line. We obtain information on the phase velocity and loss of the microstrip. Our data for Nb/SiO/Nb lines, taken at 4.2 K and 1.6 K, can be explained by a single set of physical parameters. Our preliminary conclusion is that the loss is dominated by the SiO dielectric, with a temperature-independent loss tangent of 5.3 ± 0.5 x 10^(-3) for our samples

    Estimating the number of change-points in a two-dimensional segmentation model without penalization

    Full text link
    In computational biology, numerous recent studies have been dedicated to the analysis of the chromatin structure within the cell by two-dimensional segmentation methods. Motivated by this application, we consider the problem of retrieving the diagonal blocks in a matrix of observations. The theoretical properties of the least-squares estimators of both the boundaries and the number of blocks proposed by L\'evy-Leduc et al. [2014] are investigated. More precisely, the contribution of the paper is to establish the consistency of these estimators. A surprising consequence of our results is that, contrary to the onedimensional case, a penalty is not needed for retrieving the true number of diagonal blocks. Finally, the results are illustrated on synthetic data.Comment: 30 pages, 8 figure

    Quasi-optical SIS mixers with normal metal tuning structures

    Get PDF
    We recently reported (1996) a quasi-optical SIS mixer which used Nb/Al-oxide/Nb tunnel junctions and a normal-metal (Al) tuning circuit to achieve an uncorrected receiver noise temperature of 840 K (DSB) at 1042 GHz. Here we present results on several different device designs, which together cover the 300-1200 GHz frequency range. The mixers utilize an antireflection-coated silicon hyper-hemispherical lens, a twin-slot antenna, and a two-junction tuning circuit. The broad-band frequency response was measured using Fourier transform spectrometry (FTS), and is in good agreement with model calculations. Heterodyne tests were carried out from 400 GHz up to 1040 GHz, and these measurements agree well with the FTS results and with calculations based on Tucker's theory (1985)

    Low-noise 1 THz niobium superconducting tunnel junction mixer with a normal metal tuning circuit

    Get PDF
    We describe a 1 THz quasioptical SIS mixer which uses a twin-slot antenna, an antireflection-coated silicon hyperhemispherical lens, Nb/Al-oxide/Nb tunnel junctions, and an aluminum normal-metal tuning circuit in a two-junction configuration. Since the mixer operates substantially above the gap frequency of niobium (nu >~ 2 Delta/h ~ 700 GHz), a normal metal is used in the tuning circuit in place of niobium to reduce the Ohmic loss. The frequency response of the device was measured using a Fourier transform spectrometer and agrees reasonably well with the theoretical prediction. At 1042 GHz, the uncorrected double-sideband receiver noise temperature is 840 K when the physical temperature of the mixer is 2.5 K. This is the first SIS mixer which outperforms GaAs Schottky diode mixers by a large margin at 1 THz
    • …
    corecore