253 research outputs found

    Metabolic phenotype of methylmalonic acidemia in mice and humans: the role of skeletal muscle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in methylmalonyl-CoA mutase cause methylmalonic acidemia, a common organic aciduria. Current treatment regimens rely on dietary management and, in severely affected patients, liver or combined liver-kidney transplantation. For undetermined reasons, transplantation does not correct the biochemical phenotype.</p> <p>Methods</p> <p>To study the metabolic disturbances seen in this disorder, we have created a murine model with a null allele at the methylmalonyl-CoA mutase locus and correlated the results observed in the knock-out mice to patient data. To gain insight into the origin and magnitude of methylmalonic acid (MMA) production in humans with methylmalonyl-CoA mutase deficiency, we evaluated two methylmalonic acidemia patients who had received different variants of combined liver-kidney transplants, one with a complete liver replacement-kidney transplant and the other with an auxiliary liver graft-kidney transplant, and compared their metabolite production to four untransplanted patients with intact renal function.</p> <p>Results</p> <p>Enzymatic, Western and Northern analyses demonstrated that the targeted allele was null and correctable by lentiviral complementation. Metabolite studies defined the magnitude and tempo of plasma MMA concentrations in the mice. Before a fatal metabolic crisis developed in the first 24–48 hours, the methylmalonic acid content per gram wet-weight was massively elevated in the skeletal muscle as well as the kidneys, liver and brain. Near the end of life, extreme elevations in tissue MMA were present primarily in the liver. The transplant patients studied when well and on dietary therapy, displayed massive elevations of MMA in the plasma and urine, comparable to the levels seen in the untransplanted patients with similar enzymatic phenotypes and dietary regimens.</p> <p>Conclusion</p> <p>The combined observations from the murine metabolite studies and patient investigations indicate that during homeostasis, a large portion of circulating MMA has an extra-heptorenal origin and likely derives from the skeletal muscle. Our studies suggest that modulating skeletal muscle metabolism may represent a strategy to increase metabolic capacity in methylmalonic acidemia as well as other organic acidurias. This mouse model will be useful for further investigations exploring disease mechanisms and therapeutic interventions in methylmalonic acidemia, a devastating disorder of intermediary metabolism.</p

    Optimizing the diagnostic work-up of acute uncomplicated urinary tract infections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most diagnostic tests for acute uncomplicated urinary tract infections (UTIs) have been previously studied in so-called single-test evaluations. In practice, however, clinicians use more than one test in the diagnostic work-up. Since test results carry overlapping information, results from single-test studies may be confounded. The primary objective of the Amsterdam Cystitis/Urinary Tract Infection Study (ACUTIS) is to determine the (additional) diagnostic value of relevant tests from patient history and laboratory investigations, taking into account their mutual dependencies. Consequently, after suitable validation, an easy to use, multivariable diagnostic rule (clinical index) will be derived.</p> <p>Methods</p> <p>Women who contact their GP with painful and/or frequent micturition undergo a series of possibly relevant tests, consisting of patient history questions and laboratory investigations. Using urine culture as the reference standard, two multivariable models (diagnostic indices) will be generated: a model which assumes that patients attend the GP surgery and a model based on telephone contact only. Models will be made more robust using the bootstrap. Discrimination will be visualized in high resolution histograms of the posterior UTI probabilities and summarized as 5<sup>th</sup>, 10<sup>th</sup>, 25<sup>th </sup>50<sup>th</sup>, 75<sup>th</sup>, 90<sup>th</sup>, and 95<sup>th </sup>centiles of these, Brier score and the area under the receiver operating characteristics curve (ROC) with 95% confidence intervals. Using the regression coefficients of the independent diagnostic indicators, a diagnostic rule will be derived, consisting of an efficient set of tests and their diagnostic values.</p> <p>The course of the presenting complaints is studied using 7-day patient diaries. To learn more about the natural history of UTIs, patients will be offered the opportunity to postpone the use of antibiotics.</p> <p>Discussion</p> <p>We expect that our diagnostic rule will allow efficient diagnosis of UTIs, necessitating the collection of diagnostic indicators with proven added value. GPs may use the rule (preferably after suitable validation) to estimate UTI probabilities for women with different combinations of test results. Finally, in a subcohort, an attempt is made to identify which indicators (including antibiotic treatment) are useful to prognosticate recovery from painful and/or frequent micturition.</p

    A Mathematical Model for Interpretable Clinical Decision Support with Applications in Gynecology

    Get PDF
    Over time, methods for the development of clinical decision support (CDS) systems have evolved from interpretable and easy-to-use scoring systems to very complex and non-interpretable mathematical models. In order to accomplish effective decision support, CDS systems should provide information on how the model arrives at a certain decision. To address the issue of incompatibility between performance, interpretability and applicability of CDS systems, this paper proposes an innovative model structure, automatically leading to interpretable and easily applicable models. The resulting models can be used to guide clinicians when deciding upon the appropriate treatment, estimating patient-specific risks and to improve communication with patients.We propose the interval coded scoring (ICS) system, which imposes that the effect of each variable on the estimated risk is constant within consecutive intervals. The number and position of the intervals are automatically obtained by solving an optimization problem, which additionally performs variable selection. The resulting model can be visualised by means of appealing scoring tables and color bars. ICS models can be used within software packages, in smartphone applications, or on paper, which is particularly useful for bedside medicine and home-monitoring. The ICS approach is illustrated on two gynecological problems: diagnosis of malignancy of ovarian tumors using a dataset containing 3,511 patients, and prediction of first trimester viability of pregnancies using a dataset of 1,435 women. Comparison of the performance of the ICS approach with a range of prediction models proposed in the literature illustrates the ability of ICS to combine optimal performance with the interpretability of simple scoring systems.The ICS approach can improve patient-clinician communication and will provide additional insights in the importance and influence of available variables. Future challenges include extensions of the proposed methodology towards automated detection of interaction effects, multi-class decision support systems, prognosis and high-dimensional data

    Gene therapy for monogenic liver diseases: clinical successes, current challenges and future prospects

    Get PDF
    Over the last decade, pioneering liver-directed gene therapy trials for haemophilia B have achieved sustained clinical improvement after a single systemic injection of adeno-associated virus (AAV) derived vectors encoding the human factor IX cDNA. These trials demonstrate the potential of AAV technology to provide long-lasting clinical benefit in the treatment of monogenic liver disorders. Indeed, with more than ten ongoing or planned clinical trials for haemophilia A and B and dozens of trials planned for other inherited genetic/metabolic liver diseases, clinical translation is expanding rapidly. Gene therapy is likely to become an option for routine care of a subset of severe inherited genetic/metabolic liver diseases in the relatively near term. In this review, we aim to summarise the milestones in the development of gene therapy, present the different vector tools and their clinical applications for liver-directed gene therapy. AAV-derived vectors are emerging as the leading candidates for clinical translation of gene delivery to the liver. Therefore, we focus on clinical applications of AAV vectors in providing the most recent update on clinical outcomes of completed and ongoing gene therapy trials and comment on the current challenges that the field is facing for large-scale clinical translation. There is clearly an urgent need for more efficient therapies in many severe monogenic liver disorders, which will require careful risk-benefit analysis for each indication, especially in paediatrics
    • …
    corecore