1,285 research outputs found

    Effect of high glucose concentration on the synthesis of monocyte chemoattractant protein-1 in human peritoneal mesothelial cells: Involvement of protein kinase C

    Get PDF
    Human peritoneal mesothelial cells (HMC) contribute to the activation and control of inflammatory processes in the peritoneum by their potential to produce various inflammatory mediators. The present study was designed to assess the effect of glucose, the osmotic active compound in most commercially available peritoneal dialysis fluids, on the synthesis of the C-C chemokine monocyte chemoattractant protein-1 (MCP-1) in cultured HMC. The MCP-1 concentration in the cell supernatants was determined by enzyme-linked immunosorbent assay and the MCP-1 mRNA expression was examined using Northern blot analysis. Incubation of HMC with glucose (30-120 mM) resulted in a time- and concentration-dependent increase in MCP-1 protein secretion and mRNA expression. After 24 h the MCP-1 synthesis was increased from 2.8 +/- 0.46 to 4.2 +/- 0.32 ng/10(5) cells (n = 5, p 2001 S. Karger AG. Basel

    Non-invasive monitoring of renal transplant recipients: Urinary excretion of soluble adhesion molecules and of the complement-split product C4d

    Get PDF
    Background: The number of inducible adhesion molecules known to be involved in cell-mediated allograft rejection is still increasing. In addition, recent data describe complement activation during acute humoral allograft rejection. The aim of this study was to assess whether specific molecules from either pathway are excreted into urine and whether they can provide useful diagnostic tools for the monitoring of renal transplant recipients. Methods: Urinary concentrations of soluble adhesion molecules (sICAM-1, sVCAM-1) and of the complement degradation product C4d were determined by standardized ELISA technique in 75 recipients of renal allografts and 29 healthy controls. Patient samples were assigned to four categories according to clinical criteria: group 1: acute steroid-sensitive rejection (ASSR, n=14), group 2: acute steroid-resistant rejection (ASRR, n=12), group 3: chronic allograft dysfunction (CAD, n=20) and group 4: stable graft function (SGF, n=29). Results: All patients with rejection episodes (groups 1-3) had significantly higher values of urinary sC4d compared with healthy controls and patients with stable graft function (p<0.05). The urinary levels of sVCAM-1 were significantly higher in group 2 (ASRR) compared with all other groups (p<0.001). Uniformly low amounts of s-VCAM-1 and complement-split product C4d were excreted by healthy controls (group 0). In contrast, urinary sICAM-1 concentration in healthy controls was almost as high as in group 2 (ASRR) whereas patients with a stable functioning graft (group 4) excreted significantly less sICAM-1 (p<0.05). Conclusion: The evaluation of sVCAM-1 and sC4d excretion in urine can provide a valuable tool with regard to the severity and type of allograft rejection. With respect to long-term allograft survival, serial measurements of these markers should have the potential to detect rejection episodes and prompt immediate treatment. Copyright (C) 2003 S. Karger AG, Basel

    Reduced CD40L expression on ex vivo activated CD4+T-lymphocytes from patients with excellent renal allograft function measured with a rapid whole blood flow cytometry procedure

    Get PDF
    Background: The CD40-CD40L (CD154) costimulatory pathway plays a critical role in the pathogenesis of kidney allograft rejection. In renal transplant biopsies, CD4+ CD40L+ graft-infiltrating cells were detected during chronic rejection in contrast to acute rejection episodes. Using a rapid noninvasive FACS procedure, we were able to demonstrate CD40L upregulation in peripheral blood of patients with chronic renal allograft dysfunction. Materials and Methods: Whole blood from recipients of renal allografts was stimulated with PMA and ion-omycin and measured by flow cytometry. Patients were assigned to three groups based on transplant function. Group 1: 26 patients with excellent renal transplant function; group 2: 28 patients with impaired transplant function; group 3: 14 patients with chronic allograft dysfunction and group 4: 8 healthy controls. Results: The median percentage +/-SEM of CD4+/ CD40L+ cells stimulated ex vivo at 10 ng/ml PMA was as follows: group 1: 28.3 +/- 4.1%; group 2: 18.4 +/- 2.4%; group 3: 50.1 +/- 5.0% and group 4: 40.4 +/- 3.4%. Subdivisions of groups 2 and 3 resulted in different CD40L expression patterns. Patients with increased serum creatinine since the initial phase after transplantation ( groups 2a and 3a) revealed a higher percentage of CD4+ CD40L+ cells than patients showing a gradual increase over time ( groups 2b and 3b). Consequently, patients of group 3a exhibited a significantly reduced transplant function compared with those of group 3b. Conclusion: After PMA + ionomycin stimulation, patients with excellent kidney graft function displayed significantly reduced expression of CD40L surface molecules on CD4+ cells early after transplantation. Those with a chronic dysfunction of the renal graft showed significantly more CD4+ cells expressing CD40L compared to the other transplanted groups. These results demonstrate that the percentage of CD4+ CD40L+ cells stimulated ex vivo in peripheral blood may be a valuable marker for chronic allograft nephropathy. Copyright (C) 2004 S. Karger AG, Basel

    A simple and versatile analytical approach for planar metamaterials

    Full text link
    We present an analytical model which permits the calculation of effective material parameters for planar metamaterials consisting of arbitrary unit cells (metaatoms) formed by a set of straight wire sections of potentially different shape. The model takes advantage of resonant electric dipole oscillations in the wires and their mutual coupling. The pertinent form of the metaatom determines the actual coupling features. This procedure represents a kind of building block model for quite different metaatoms. Based on the parameters describing the individual dipole oscillations and their mutual coupling the entire effective metamaterial tensor can be determined. By knowing these parameters for a certain metaatom it can be systematically modified to create the desired features. Performing such modifications effective material properties as well as the far field intensities remain predictable. As an example the model is applied to reveal the occurrence of optical activity if the split ring resonator metaatom is modified to L- or S-shaped metaatoms.Comment: 5 figures, 1 tabl

    Validity of effective material parameters for optical fishnet metamaterials

    Full text link
    Although optical metamaterials that show artificial magnetism are mesoscopic systems, they are frequently described in terms of effective material parameters. But due to intrinsic nonlocal (or spatially dispersive) effects it may be anticipated that this approach is usually only a crude approximation and is physically meaningless. In order to study the limitations regarding the assignment of effective material parameters, we present a technique to retrieve the frequency-dependent elements of the effective permittivity and permeability tensors for arbitrary angles of incidence and apply the method exemplarily to the fishnet metamaterial. It turns out that for the fishnet metamaterial, genuine effective material parameters can only be introduced if quite stringent constraints are imposed on the wavelength/unit cell size ratio. Unfortunately they are only met far away from the resonances that induce a magnetic response required for many envisioned applications of such a fishnet metamaterial. Our work clearly indicates that the mesoscopic nature and the related spatial dispersion of contemporary optical metamaterials that show artificial magnetism prohibits the meaningful introduction of conventional effective material parameters

    The Reconfiguration of Public Authority in Developing Countries

    Get PDF
    In recent years, several scholars of world politics have observed a relocation of authority in different issue areas of global policy-making. This development appears to be particularly evident in the field of global climate politics where a number of authors have highlighted the gradual loss of authority by national governments and the emergence of new spheres of authority dominated by actors other than the nation-state. In fact, due to the existence of a regulatory gap in this policy domain, various new governance arrangements have emerged which work simultaneously at different levels (some top-down and others bottom-up) to cope with the problem of climate change. However, despite several broader descriptions and mapping exercises, we have little systematic knowledge about their workings, let alone their impact on political-administrative systems. Given these shortcomings, in this paper we explore how (and how far) different types of globally operating governance arrangements have caused changes in the distribution of authority within national governments and their public administration. We will focus on two stylized governance arrangements: one that operates bottom-up (i.e. Transnational City Networks, TCNs) and another that operates top-down (i.e. Reducing Emissions from Deforestation and Forest Degradation, REDD+). Departing from our hypotheses that the former is likely to lead to more decentralization and the latter to more centralization of environmental policy making, we will present some preliminary findings from our case studies in Brazil, India, Indonesia, and South Africa

    Influence of different types of reinforcements on the embedment behavior of steel dowels in wood

    Get PDF
    In this study, dowel displacement-embedment stress relationships for different types, numbers and positions of reinforcements were experimentally investigated using a half-hole embedment test setup. Tests were performed parallel to the grain and in compression. Screws with a full or partial thread at different positions below the dowel and oriented strand board, plywood and nail plates on the loaded surfaces of the specimens, served as reinforcements. Test results underline their potential for an increased ductility of dowel-type connections. Comparison of reinforced and unreinforced specimens suggests premature failure of the unreinforced wood and consequently, an underestimation of the embedment strength as it is subsequently used in the design of dowel connections using the European yield model. This was supported by the investigation of cracks on the surface of the specimens visualized by means of a full-field deformation measurement system. It could be demonstrated that the strength in the embedment test even further increases if the reinforcement elements actively contribute to the load transfer. This property however cannot be considered as embedment strength, but represents the strength of a connection system. Test data is compared to the design equation in Eurocode 5

    Uncertainty evaluation for velocity–area methods

    Get PDF
    Velocity–area methods are used for flow rate calculation in various industries. Applied within a fully turbulent flow regime, modest uncertainties can be expected. If the flow profile cannot be described as “log-like”, the recommended measurement positions and integration techniques exhibit larger errors. To reduce these errors, an adapted measurement scheme is proposed. The velocity field inside a Venturi contour is simulated using computational fluid dynamics and validated using laser Doppler anemometry. An analytical formulation for the Reynolds number dependence of the profile is derived. By assuming an analytical velocity profile, an uncertainty evaluation for the flow rate calculation is performed according to the “Guide to the expression of uncertainty in measurement”. The overall uncertainty of the flow rate inside the Venturi contour is determined to be 0.5 % compared to 0.67 % for a fully developed turbulent flow
    corecore