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Velocity–area methods are used for flow rate calculation in various industries. Applied within a fully
turbulent flow regime, modest uncertainties can be expected. If the flow profile cannot be described as
“log-like”, the recommended measurement positions and integration techniques exhibit larger errors. To
reduce these errors, an adapted measurement scheme is proposed. The velocity field inside a Venturi
contour is simulated using computational fluid dynamics and validated using laser Doppler anemometry.
An analytical formulation for the Reynolds number dependence of the profile is derived. By assuming an
analytical velocity profile, an uncertainty evaluation for the flow rate calculation is performed according
to the “Guide to the expression of uncertainty in measurement”. The overall uncertainty of the flow rate
inside the Venturi contour is determined to be 0.5% compared to ≈0.67% for a fully developed turbulent
flow.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Flow measuring devices can be grouped into three main cate-
gories: integrative methods like differential pressure measure-
ments or magnetic inductive devices, semi-integrative methods
like ultrasonic path meters, and sampling based techniques which
rely on a discrete number of measurement positions such as ve-
locity–area methods.

These methods have been successfully applied to a variety of
flow conditions. Especially for larger pipes, open field acceptance
tests or temporary measurements, they present a feasible alter-
native to conventional flow measuring devices. Another advantage
is that these methods can easily be applied within an arbitrary
measurement section or open channel flow. Though traditionally
used with pitot tubes or inserted devices, they can also be applied
to optical velocity measurement techniques like laser Doppler
anemometry (LDA).

In order to convert the pointwise velocities to a flow rate, a
precise numerical integration method is preferable. The overall
idea is to get an acceptable uncertainty for the flow rate with the
least possible number of sample positions. The most general for-

mulation of the measurement problem is: ∫ ∫ φ= ·
π

Q v r d dr
R

0 0

2
. For

the case of a rotational symmetric turbulent pipe flow in a circu-
lar measurement section the problem is reduced to a path
r Ltd. This is an open access article

ck).
bt7/fb-75.html (J. Steinbock).
integration: ∫π= ·Q r v dr2
R

0
. For a known velocity profile the

metrological effort can be even further reduced from a path
measurement to a single point measurement. Aichelen [1] pro-
posed placing the probe at the position where the volumetric flow
velocity occurs. The point of the average velocity varies for dif-
ferent models of turbulent pipe flow depending on the Reynolds
number, as shown in Fig. 1. A different approach is to measure the
centreline velocity while computing the flow rate using a cali-
bration factor as proposed by Strunck et al. [11]. However, by re-
stricting the measurement of an unknown profile to just one point,
there is no way to tell whether the implicit assumptions con-
cerning the shape of the profile are viable. Therefore, in general
multiple radial positions are necessary. Quite a few integration
techniques and guidelines for optimized measurement positions
have been published. Based on Winternitz and Fischl [15] the
commonly used integration procedures are described in the
standards ISO 3354 [3], ISO 3966 [4] and VDI 2640 [12]. These
methods are based on the assumption of a fully developed tur-
bulent pipe flow where the velocity can be described by “log-like”
behavior. This can only be achieved by a long undisturbed en-
trance length or flow conditioning both are often not feasible. The
true velocity field in the measuring plane is therefore in general
unknown, thus making the uncertainty evaluation of the standard
methods quite cumbersome.

In order to create well-defined conditions, a Venturi contour is
investigated. Due to the different shapes of the velocity distribu-
tion in the Venturi nozzle, it will be shown that the standard
velocity–area methods exhibit higher errors. To reduce the un-
certainty for the flow rate calculation, optimized measurement
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Radial location of the average velocity: (a) Gersten/Herwig profile acc. to [8],
(b) power-law profile acc. to Miller [9].

Fig. 2. Discretization error of velocity–area methods applied to the Gersten/Herwig
profile ( = )k 1 ; log linear (LL), log Chebyshev (LC), centroid (C) and centroid with
wall correction (CW).
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positions are derived. To compare the performance of the new
method, an uncertainty evaluation based on analytical velocity
profiles is applied. We consider the fully turbulent pipe flow first,
since the descriptions of the uncertainties in the standards are
rather short.
2. Uncertainty evaluation for fully developed turbulent pipe
flow

Velocity–area methods calculate the flow rate as follows: the
cross section is divided into equally sized parts. The measurement
position for each piece is given either by the centroid or the position
of the average velocity in this area. The flow rate is determined as
the mean measured velocity multiplied with the area of the cross
section. Some integration techniques apply an extrapolation proce-
dure/a wall correction. Recommended locations for up to five radial
sample positions are tabulated in the standards ISO 3354 [3], ISO
3966 [4] and VDI 2640 [12]. These procedures, developed to cope
with only limited access to data processing and automation, are log
linear (LL), log Chebyshev (LC), centroid (C), and centroid with wall
correction (CW). Due to the pointwise sampling of the continuous
velocity field, an intrinsic discretization error must be taken into
account. To assess this error, an analytical reference profile with
known flow rate is required. It is mandatory that this profile conveys
the essential geometric and hydraulic phenomena of the emulated
flow. A generic velocity formulation according to Gersten and Her-
wig [8] is used for the investigation of the discretization error. This
profile, referred to as the GH profile, is a closed formulation for the
streamwise velocity component of a flow in a round pipe. The pipe
flow model is valid in the fully turbulent range for Reynolds num-
bers between ×4 104 and ×1 107.

All methods were analyzed for the recommended five radial
sample positions. The derived flow rate was then compared to the
exact integration of the GH profile. This procedure is performed for
a Reynolds number range of ×1 104– ×2 106. All methods show a
Reynolds number dependence. It is worth noting that despite
measuring on only five radial sample positions, even the highest
discretization error is smaller than 2%. For the LL and LC, the errors
are smaller than 0.6% compare Fig. 2.

To point out the importance of the discretization error, the
overall uncertainty has to be derived. Neglecting any radial
asymmetries, a minimal measurement uncertainty can be estab-
lished based on the discretization error, the accuracy of the
traverse system, the uncertainty of the velocity measurement and
the uncertainty of the cross-sectional area.

The influence of the accuracy of the traverse system on the
measurement positions and its effect on the uncertainty of the
flow rate are determined as follows. The sensitivity coefficient for
each individual measurement position is estimated by a numerical
differential quotient as proposed in the “Guide to the expression of
uncertainty in measurement (GUM)” [5]. Each emulated mea-
surement is repeated with slightly shifted sample positions. For
the sake of simplicity all measurement positions are confined to a
dimensionless radial coordinate r R/ between 0 and 1. If for any
shifted sample position a radial coordinate outside of the conduit
occurs, it is mirrored either on the wall or on the centreline. Fur-
thermore, it is assumed that all positional errors are uncorrelated
and of the same magnitude. In ISO standard 3966 [4] a maximum
permissible positional error of 0.5% pipe diameter D is given. The
following configurations will be discussed: Δ =r R/ 0.50% D, 0.25%
D, 0.1%D and 0.05%D. For large Reynolds numbers the influence of
the positioning precision declines. This is due to the rather flat
velocity profile. The effect of the steeper curvature in the proxi-
mity of the wall cannot be sampled by the (recommended) five
measurement positions. The uncertainty contribution of the other
velocity–area methods is of the same order. The resulting traverse
uncertainties for the log Chebyshev method are shown in Fig. 3.

As an example, the uncertainty of the log Chebyshev method at a
Reynolds number of ×1 105 is presented. Fig. 2 yields the dis-
cretization uncertainty with 0.21%. Fig. 3 yields the positioning
contribution for an uncertainty of 0.1%D with 0.1%. The uncertainty
of the velocity measurement, based on laser Doppler anemometry, is
estimated to be 0.2%. The uncertainty of the cross section's diameter,
nominally 75 mm, is 0.03 mm thus accounting for an uncertainty of
the flow area of 0.1%.

The combined standard uncertainty for the log Chebyshev
method can be stated to be 0.32% (k¼1) or 0.65% (k¼2) for this
particular configuration, as shown in Table 1, column 1. For a
different measurement setup, e.g. a different velocity uncertainty,
these values can be easily adapted.

The example of the uncertainty assessment shows that the
discretization error accounts for 40% of the overall uncertainty. It is
obvious that with an increased number of sample positions, the
intrinsic discretization error can be reduced. Depending on the
application, the proper ratio between measuring time and accu-
racy has to be weighed.



Fig. 3. Influence of the positional accuracy on the determined flow rate for the log
Chebyshev method applied to the Gersten/Herwig velocity profile ( = )k 1 .

Table 1

Uncertainty of velocity–area methods for Re ×1.0 105.

Profile GH Tanh

Procedure LC LC Opt

Discretization uncertainty 0.210 0.530 0.070 (%)
Positional uncertainty 0.100 0.045 0.067 (%)
Velocity uncertainty 0.200 0.200 0.200 (%)
Area uncertainty 0.100 0.100 0.100 (%)

Combined variance 0.1041 0.3309 0.059
Comb. uncertainty ( = )k 1 0.32 0.58 0.24 (%)

Comb. uncertainty ( = )k 2 0.65 1.15 0.49 (%)
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3. Uncertainty evaluation for flow rate determination inside a
Venturi contour

A fully developed turbulent flow cannot be realized on most
occasions. Constrictions and nozzles can therefore be applied to
homogenize the velocity profile. In the new high temperature
water flow standard at the Physikalisch-Technische Bundesanstalt
Fig. 4. Sectional view of the CAD m
(PTB) in Berlin, a Venturi nozzle with a diameter ratio of 0.5 is
used, see Fig. 4. The form of the radial velocity distribution can no
longer be described with the commonly accepted log law. In its
place an analytical tanh profile is applied as proposed by Strunck
et al. [11]. The formula for the velocity profile inside the Venturi
contour is represented by:

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠
⎞
⎠⎟( ) = −

( )
u r u k

r
R

tanh 1
1tanh

b

0

where u0 represents the dimensionless maximum velocity, k is the
displacement parameter and b denotes the form parameter. All
three coefficients generally depend on the particular geometry of
the Venturi nozzle and the Reynolds number. To determine these
parameters, laser Doppler measurements as well as computational
fluid dynamic (CFD) simulations were conducted. The Reynolds
numbers × × × ×1 10 , 3 10 , 4.5 10 and 1 105 5 5 6, relating to an
inlet diameter D of 150 mm were considered.
3.1. Experimental setup

A 6 m measuring section of nominal diameter D150 mm was
installed at the German standard for the scale “thermal energy”.
The flow standard, described by Mathies [7], is capable of flow
rates between 3 m3h�1 and 1000 m3h�1 while maintaining
temperatures from 3 °C to 90 °C. The uncertainty of the re-
presented flow is rated at 0.04% ( = )k 2 . This uncertainty is reached
via a traceable gravimetric system. The temperature uncertainty is
50 mK. In the middle of the measuring section a Venturi nozzle
(short form) [2] featuring a throat diameter of 75 mm is placed.
The relevant metrological Venturi contour is designed as an insert.
A rugged industrial armature made by Noris Armaturen GmbH with
meta-glass windows is employed as a pressure containment. The
Venturi throat is equipped with a precision glass tube, thus al-
lowing laser Doppler measurements to be performed inside the
constriction. A positioning system moves the active laser Doppler
measuring volume throughout the whole cross section. A ray
tracing method is applied to compute the measurement positions.
The laser probe is a Nd:YAG D1 system with a rated power of
200 mW and a wavelength of 532 mm from ILA GmbH. To reach
the projected Reynolds numbers, different combinations of flow
rate and temperature were employed. Each profile was measured
with an angular resolution of 10° at 21 radial sample positions.
odel of the Venturi contour.



Fig. 5. Contour plot of the simulated dimensionless axial velocity distribution on the middle plane at a Reynolds number of ×3 105.

Fig. 6. The fitted tanh function, measurement and simulation data predicting the
velocity profile inside the Venturi nozzle for =Re e3 5.
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3.2. Numerical setup

The numerical simulations are performed with the commercial
CFD code CFX from Ansys. A structural hexa mesh is generated with
about ×5 106 grid points, where the dimensionless wall distance of
the first node is ≈+y 1. For the boundary conditions, a hydraulic
smooth no-slip wall is chosen along with a fully developed flow
profile from earlier simulations with the same Reynolds numbers for
the inlet. An average pressure is set at the outlet. The Wilcox-κ ω−
turbulence model [14] is employed, as it yields the best performance
for turbulent pipe flow simulations, compare Weissenbrunner et al.
[13]. As expected, the flow profile inside the constriction is flatter
than the fully developed profile, see Fig. 5. At the end of the exit
cone flow separation occurs. The simulation shows the transient
behavior of the separation. Nevertheless, the velocity field in the
measuring section is not affected by this detachment.
3.3. Analytical profile

The coefficients of utanh(r) from Eq. (1) are calculated by fitting
the parameters to the measurement data. The python fit routine
scipy.optimize.fmin is used, which is based on the downhill simplex
algorithm by Nelder [10]. As fit criteria the integral
⎛
⎝
⎜⎜

⎛
⎝⎜
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⎠⎟
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⎠
⎟⎟∫ε = ( ( ) − ( ))
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tanh meas

, , 0

1
2
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0

is considered, where umeas(r) represents the measurement. The
integral is solved by interpolating umeas(r) and utanh(r) between the
discrete measurement points with piecewise linear functions. The
error ε between the fitted profile and the measurements is in the
range 1.2–1.5%. The results of the measurement, the simulation
and the fitted profile inside the Venturi nozzle at a Reynolds
number of ×3 105 are shown in Fig. 6. The error bars at the
measurement values represent the measured axial turbulence in %.
Qualitatively all three profiles show satisfying agreement. The si-
mulated results exhibit slightly higher dependences of the Rey-
nolds number than the measurement profiles. One explanation for
the generally low Reynolds influence can be found in the flow
coefficient: it is just dependent on the geometric dimensions [2].
Thus, the implemented Venturi contour is convenient for flow
conditioning. It is worth noting that other nozzle types, for ex-
ample the ISA-1932, also exhibit a low Reynolds dependence. Its
coefficient changes by about 0.4% for this Reynolds range. To
perform the same studies for the tanh profile as for the fully de-
veloped Gersten/Herwig profile, a prediction of the Reynolds
number dependence of the coefficients was necessary. A set of
linear functions was fitted to the parameters u0i, ki, and bi. The
coefficients within a Reynolds number range of × – ×1 10 1 105 6

can then be formulated as follows:

( ) = − × · +
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3.4. Uncertainty for improved tanh method

For further uncertainty assessment the velocity–area methods
were tested against the analytical tanh nozzle profile. All velocity–
area methods exhibit a slightly Reynolds dependent discretization
error in the range of 0.5% to 1.2%, as illustrated in Fig. 7. Due to the
flat top velocity distribution, the obtained positional uncertainties
are smaller than for the fully turbulent flow, compare Section 2.
Furthermore there is only a marginal influence of the Reynolds
number since the change in the slope of the velocity profile cannot
be covered by only five sample positions. Taking the same as-
sumptions into consideration as before, the overall uncertainty can
now be stated as 1.15%, compare Table 1, column 2. This is almost
double the value as for the fully developed flow. From this rise in
uncertainty it can be concluded that for non-log-like velocity
profiles an adapted integration method has to be applied.



Fig. 7. Discretization error of velocity–area methods applied to the tanh profile
( = )k 1 ; log linear (LL), log Chebyshev (LC), centroid (C), centroid with wall cor-
rection (CW) and optimized (opt).

Fig. 8. Deviation of flow rates obtained by different velocity–area methods com-
pared to a gravimetric flow standard; log linear (LL), log Chebyshev (LC), centroid
(C), centroid with wall correction (CW) and optimized (opt).
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Otherwise, higher uncertainties have to be accepted even if the
measuring conditions are favorable due to the homogenization of
the flow in the constriction.

To apply the velocity–area procedure to this specific flow si-
tuation, new sample positions are required. The cross section is
therefore divided into subsections of equal area. Five radial sub-
sections are chosen to be comparable to common velocity–area
methods. For each subsection the radial position of the mean ve-
locity is computed. For a known radial velocity distribution it is
always possible to find (Reynolds) optimized sample positions so
that the discretization error is negligible. To cover the Reynolds
number range × – ×1 10 1 105 6, we choose optimized points for a
Reynolds number of ×5 105. For the proposed tanh profile, the
discretization error can be reduced to a maximum of 0.07%,
compare Fig. 7. The optimized sample positions are =r R/ 0.3311,
0.5577, 0.7159, 0.8466 and 0.9706. The reduced uncertainty can
then be stated as 0.24% (k¼1) or 0.49% (k¼2), compare Table 1,
column 3. It is obvious that the discretization error is only a
marginal part of the combined uncertainty. For further uncertainty
optimization the input-uncertainties of the velocity, of the cross-
sectional area and the traverse system have to be reduced.

3.5. Experimental validation of the quantified uncertainties

To validate the proposed uncertainty quantifications, the velo-
city–area methods were applied to the measurement data for all
studied Reynolds numbers. As before five radial positions were
considered. The velocity values for the recommended positions
were calculated by an Akima-spline interpolation [6] of the mea-
sured 21 radial samples. As the positions are very close to the
measured ones, the error caused by the interpolation is negligible.
The calculated volume flows were compared to the flow rate va-
lues of the gravimetric flow meter standard. The derived errors are
in the estimated scope. While C and CW show a relative difference
of more than 1%, the methods LL and LC are in the range of 0.75–
1%. The error of the flow rate determined with the optimized (opt)
velocity–area method is lower than 0.3%, compare Fig. 8. The er-
rors of the experimentally applied methods are within the esti-
mated uncertainties that were evaluated for the LC and the opti-
mized velocity area method, compare Table 1.
4. Conclusion

In the first step, existing velocity–area methods were applied to
the theoretical profile from Gersten [8] representing fully devel-
oped pipe flow. An uncertainty quantification was derived. In the
next step, a Reynolds number dependent theoretical model was
derived from simulations and measurements in a Venturi nozzle.
Applied to that tanh shaped profile, it was shown that the dis-
cretization error of the existing velocity–area methods is greater
than 0.5%. To decrease the combined uncertainty, new measure-
ment points were presented. These reduce the discretization error
for the Venturi profile to 0.07%, in the Reynolds number interval

× – ×1 10 1 105 6. Furthermore, the combined uncertainties con-
cerning the flow rate are tabulated as an example for five radial
sample positions. Due to the optimized sample positions for the
nozzle profile, the overall uncertainty is reduced by 50%. The
evaluated uncertainties were experimentally validated by com-
parison with a gravimetric flow meter standard.

The advantage of measuring in a Venturi nozzle is that the
profile is stable and only slightly affected by upstream dis-
turbances. Nonetheless, the stability of the profile inside the
nozzle for asymmetric and swirl containing inflow has to be stu-
died and incorporated in a future uncertainty evaluation.
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