119 research outputs found
Single-Domain Parvulins Constitute a Specific Marker for Recently Proposed Deep-Branching Archaeal Subgroups
Peptidyl-prolyl cis/trans isomerases (PPIases) are enzymes assisting protein folding and protein quality control in organisms of all kingdoms of life. In contrast to the other sub-classes of PPIases, the cyclophilins and the FK-506 binding proteins, little was formerly known about the parvulin type of PPIase in Archaea. Recently, the first solution structure of an archaeal parvulin, the PinA protein from Cenarchaeum symbiosum, was reported. Investigation of occurrence and frequency of PPIase sequences in numerous archaeal genomes now revealed a strong tendency for thermophilic microorganisms to reduce the number of PPIases. Single-domain parvulins were mostly found in the genomes of recently proposed deep-branching archaeal subgroups, the Thaumarchaeota and the ARMANs (archaeal Richmond Mine acidophilic nanoorganisms). Hence, we used the parvulin sequence to reclassify available archaeal metagenomic contigs, thereby, adding new members to these subgroups. A combination of genomic background analysis and phylogenetic approaches of parvulin sequences suggested that the assigned sequences belong to at least two distinct groups of Thaumarchaeota. Finally, machine learning approaches were applied to identify amino acid residues that separate archaeal and bacterial parvulin proteins from each other. When mapped onto the recent PinA solution structure, most of these positions form a cluster at one site of the protein possibly indicating a different functionality of the two groups of parvulin proteins
Contractile Function during Angiotensin-II Activation:Increased Nox2 Activity Modulates Cardiac Calcium Handling via Phospholamban Phosphorylation
AbstractBackgroundRenin-angiotensin system activation is a feature of many cardiovascular conditions. Activity of myocardial reduced nicotinamide adenine dinucleotide phosphate oxidase 2 (NADPH oxidase 2 or Nox2) is enhanced by angiotensin II (Ang II) and contributes to increased hypertrophy, fibrosis, and adverse remodeling. Recent studies found that Nox2-mediated reactive oxygen species production modulates physiological cardiomyocyte function.ObjectivesThis study sought to investigate the effects of cardiomyocyte Nox2 on contractile function during increased Ang II activation.MethodsWe generated a cardiomyocyte-targeted Nox2-transgenic mouse model and studied the effects of in vivo and ex vivo Ang II stimulation, as well as chronic aortic banding.ResultsChronic subpressor Ang II infusion induced greater cardiac hypertrophy in transgenic than wild-type mice but unexpectedly enhanced contractile function. Acute Ang II treatment also enhanced contractile function in transgenic hearts in vivo and transgenic cardiomyocytes ex vivo. Ang II–stimulated Nox2 activity increased sarcoplasmic reticulum (SR) Ca2+ uptake in transgenic mice, increased the Ca2+ transient and contractile amplitude, and accelerated cardiomyocyte contraction and relaxation. Elevated Nox2 activity increased phospholamban phosphorylation in both hearts and cardiomyocytes, related to inhibition of protein phosphatase 1 activity. In a model of aortic banding–induced chronic pressure overload, heart function was similarly depressed in transgenic and wild-type mice.ConclusionsWe identified a novel mechanism in which Nox2 modulates cardiomyocyte SR Ca2+ uptake and contractile function through redox-regulated changes in phospholamban phosphorylation. This mechanism can drive increased contractility in the short term in disease states characterized by enhanced renin-angiotensin system activation
Axial tubule junctions control rapid calcium signaling in atria.
The canonical atrial myocyte (AM) is characterized by sparse transverse tubule (TT) invaginations and slow intracellular Ca2+ propagation but exhibits rapid contractile activation that is susceptible to loss of function during hypertrophic remodeling. Here, we have identified a membrane structure and Ca2+-signaling complex that may enhance the speed of atrial contraction independently of phospholamban regulation. This axial couplon was observed in human and mouse atria and is composed of voluminous axial tubules (ATs) with extensive junctions to the sarcoplasmic reticulum (SR) that include ryanodine receptor 2 (RyR2) clusters. In mouse AM, AT structures triggered Ca2+ release from the SR approximately 2 times faster at the AM center than at the surface. Rapid Ca2+ release correlated with colocalization of highly phosphorylated RyR2 clusters at AT-SR junctions and earlier, more rapid shortening of central sarcomeres. In contrast, mice expressing phosphorylation-incompetent RyR2 displayed depressed AM sarcomere shortening and reduced in vivo atrial contractile function. Moreover, left atrial hypertrophy led to AT proliferation, with a marked increase in the highly phosphorylated RyR2-pS2808 cluster fraction, thereby maintaining cytosolic Ca2+ signaling despite decreases in RyR2 cluster density and RyR2 protein expression. AT couplon "super-hubs" thus underlie faster excitation-contraction coupling in health as well as hypertrophic compensatory adaptation and represent a structural and metabolic mechanism that may contribute to contractile dysfunction and arrhythmias
- …