1,466 research outputs found
Elastic properties of cubic crystals: Every's versus Blackman's diagram
Blackman's diagram of two dimensionless ratios of elastic constants is
frequently used to correlate elastic properties of cubic crystals with
interatomic bondings. Every's diagram of a different set of two dimensionless
variables was used by us for classification of various properties of such
crystals. We compare these two ways of characterization of elastic properties
of cubic materials and consider the description of various groups of materials,
e.g. simple metals, oxides, and alkali halides. With exception of intermediate
valent compounds, the correlation coefficients for Every's diagrams of various
groups of materials are greater than for Blackaman's diagrams, revealing the
existence of a linear relationship between two dimensionless Every's variables.
Alignment of elements and compounds along lines of constant Poisson's ratio
, ( arbitrary perpendicular to ) is
observed. Division of the stability region in Blackman's diagram into region of
complete auxetics, auxetics and non-auxetics is introduced. Correlations of a
scaling and an acoustic anisotropy parameter are considered.Comment: 8 pages, 9 figures, presented on The Ninth International School on
Theoretical Physics "Symmetry and Structural Properties of Condensed Matter",
5 - 12 September 2007, Myczkowce, Polan
Consent to a Search and Seizure by a Member of the Suspect\u27s Family: A Survey of the Problems
Constitutional provisions, statutes and common law rules of criminal procedure, desigmed to protect an individual\u27s privacy and security, require that most searches and seizures in the Anglo-American system of jurisprudence be conducted pursuant to a warrant. The Fourth Amendment of the Constitution of the United States, now applicable to the states, Mapp v. Ohio, ex- plicitly limits searches and seizures and outlaws the broad, general warrants and writs of assistance of the eighteenth century
Non-linear amplification of small spin precession using long range dipolar interactions
In measurements of small signals using spin precession the precession angle
usually grows linearly in time. We show that non-linear interactions between
particles can lead to an exponentially growing spin precession angle, resulting
in an amplification of small signals and raising them above the noise level of
a detection system. We demonstrate amplification by a factor of greater than 8
of a spin precession signal due to a small magnetic field gradient in a
spherical cell filled with hyperpolarized liquid Xe. This technique can
improve the sensitivity in many measurements that are limited by the noise of
the detection system, rather then the fundamental spin-projection noise.Comment: 4 pages, 4 figure
Electron Spin-Lattice Relaxation of doped Yb3+ ions in YBa2Cu3Ox
The electron spin-lattice relaxation (SLR) times T1 of Yb3+‡ ions were
measured from the temperature dependence of electron spin resonance linewidth
in Y0.99Yb0.01Ba2Cu3Ox with different oxygen contents. Raman relaxation
processes dominate the electron SLR. Derived from the temperature dependence of
the SLR rate, the Debye temperature (Td) increases with the critical
temperature Tc and oxygen content x. Keywords: EPR; ESR; Electron spin-lattice
relaxation; Debye temperature; Critical temperatureComment: 5 Pages 4 Figure
- …