51 research outputs found

    Cyber Security of the Railway wireless system: detection, decision and Human-in-the-Loop

    Get PDF
    TRA 2018, 7th Transport Research Arena, Vienne, AUTRICHE, 16-/04/2018 - 19/04/2018The networks used in the Railway domain are usually heterogeneous, not enough protected and not fitted to the usual Cyber Security requirements in terms of sustainability, protection and attack detection. Furthermore, the quick evolution of the telecommunication means, the threats and the sustainability aspects have to be taken into account in order to protect the Railway system. The paper presents the first contributions on Cyber Security for railways that can be divided into three main aspects dealing with the Cyber Security of the wireless part of the railway communication system: detection, decision and Human-in-the-Loop. Part of the work will be devoted to the development of an Open Pluggable Framework (OPF). The OPF is a software framework based on automation principles. It monitors the environment, then some algorithms detect abnormal behaviours, and next, OPF decides which reaction to take and finally apply this action (e.g. an alarm or a reconfiguration). The last part 'human in the loop' aims at answering the questions: what happens if the automatic countermeasures fail and how the driver can cope with the attack consequences. It consists in placing professional drivers and Central Traffic Control operators in a realistic simulator and playing scenarios involving attacks and observing the reactions of the professional drivers. A preliminary methodology is proposed and discussed through a concrete case study

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM
    corecore