14 research outputs found

    Learning from natural sediments to tackle microplastics challenges: A multidisciplinary perspective

    Get PDF
    Although the study of microplastics in the aquatic environment incorporates a diversity of research fields, it is still in its infancy in many aspects while comparable topics have been studied in other disciplines for decades. In particular, extensive research in sedimentology can provide valuable insights to guide future microplastics research. To advance our understanding of the comparability of natural sediments with microplastics, we take an interdisciplinary look at the existing literature describing particle properties, transport processes, sampling techniques and ecotoxicology. Based on our analysis, we define seven research goals that are essential to improve our understanding of microplastics and can be tackled by learning from natural sediment research, and identify relevant tasks to achieve each goal. These goals address (1) the description of microplastic particles, (2) the interaction of microplastics with environmental substances, (3) the vertical distribution of microplastics, (4) the erosion and deposition behaviour of microplastics, (5) the impact of biota on microplastic transport, (6) the sampling methods and (7) the microplastic toxicity. When describing microplastic particles, we should specifically draw from the knowledge of natural sediments, for example by using shape factors or applying methods for determining the principal dimensions of non-spherical particles. Sediment transport offers many fundamentals that are transferable to microplastic transport, and could be usefully applied. However, major knowledge gaps still exist in understanding the role of transport modes, the influence of biota on microplastic transport, and the importance and implementation of the dynamic behaviour of microplastics as a result of time-dependent changes in particle properties in numerical models. We give an overview of available sampling methods from sedimentology and discuss their suitability for microplastic sampling, which can be used for creating standardised guidelines for future application with microplastics. In order to comprehensively assess the ecotoxicology of microplastics, a distinction must be made between the effects of the polymers themselves, their physical form, the plastic-associated chemicals and the attached pollutants. This review highlights areas where we can rely on understanding and techniques from sediment research - and areas where we need new, microplastic-specific knowledge - and synthesize recommendations to guide future, interdisciplinary microplastic research

    Bivalirudin infusion to reduce ventricular infarction: the open-label, randomised Bivalirudin Infusion for Ventricular InfArction Limitation (BIVAL) study

    No full text
    Item does not contain fulltextAIMS: The aim of the study was to investigate whether bivalirudin versus unfractionated heparin (UFH) reduces infarct size (IS) for primary percutaneous coronary intervention (PPCI) in large acute myocardial infarction (AMI). METHODS AND RESULTS: This multicentre open-label trial randomised 78 patients undergoing PPCI for large AMI to bivalirudin or UFH. The primary endpoint was IS, assessed by cardiac magnetic resonance (CMR) five days after PPCI. Secondary endpoints included index of microcirculatory resistance (IMR), CMR-assessed microvascular obstruction (MVO) and ejection fraction, and biomarkers for thrombin activity and cell injury. No difference was observed in mean IS at five days (25.0+/-19.7 g for bivalirudin vs. 27.1+/-20.7 g for UFH; p=0.75). Early MVO was numerically lower with bivalirudin (5.3+/-5.8 g vs. 7.7+/-6.3 g; p=0.17), with no significant difference in ejection fraction at 90 days (54.6+/-12.0% vs. 49.1+/-12.1%; p=0.11). In the biomarkers, thrombin-antithrombin complexes were reduced by 4.8 ug/L over the first day for bivalirudin versus an increase of 1.9 ug/L in the heparin arm (p=0.0003). Acute IMR was lower (43.5+/-21.6 vs. 68.7+/-35.8 mmHgxs, respectively; p=0.014). In a planned interim analysis, an approximate 11% reduction in IS was observed with bivalirudin; the trial was discontinued for futility. CONCLUSIONS: This study did not achieve its primary endpoint of significant infarct size reduction in PPCI by prolonged bivalirudin infusion compared to UFH, even though complete thrombin inhibition was achieved in the acute phase, with a lower myocardial microcirculation resistance at the end of the procedure

    Learning from natural sediments to tackle microplastics challenges: A multidisciplinary perspective

    No full text
    Although the study of microplastics in the aquatic environment incorporates a diversity of research fields, it is still in its infancy in many aspects while comparable topics have been studied in other disciplines for decades. In particular, extensive research in sedimentology can provide valuable insights to guide future microplastics research. To advance our understanding of the comparability of natural sediments with microplastics, we take an interdisciplinary look at the existing literature describing particle properties, transport processes, sampling techniques and ecotoxicology. Based on our analysis, we define seven research goals that are essential to improve our understanding of microplastics and can be tackled by learning from natural sediment research, and identify relevant tasks to achieve each goal. These goals address (1) the description of microplastic particles, (2) the interaction of microplastics with environmental substances, (3) the vertical distribution of microplastics, (4) the erosion and deposition behaviour of microplastics, (5) the impact of biota on microplastic transport, (6) the sampling methods and (7) the microplastic toxicity. When describing microplastic particles, we should specifically draw from the knowledge of natural sediments, for example by using shape factors or applying methods for determining the principal dimensions of non-spherical particles. Sediment transport offers many fundamentals that are transferable to microplastic transport, and could be usefully applied. However, major knowledge gaps still exist in understanding the role of transport modes, the influence of biota on microplastic transport, and the importance and implementation of the dynamic behaviour of microplastics as a result of time-dependent changes in particle properties in numerical models. We give an overview of available sampling methods from sedimentology and discuss their suitability for microplastic sampling, which can be used for creating standardised guidelines for future application with microplastics. In order to comprehensively assess the ecotoxicology of microplastics, a distinction must be made between the effects of the polymers themselves, their physical form, the plastic-associated chemicals and the attached pollutants. This review highlights areas where we can rely on understanding and techniques from sediment research - and areas where we need new, microplastic-specific knowledge - and synthesize recommendations to guide future, interdisciplinary microplastic research

    Learning from natural sediments to tackle microplastics challenges: A multidisciplinary perspective

    No full text
    Although the study of microplastics in the aquatic environment incorporates a diversity of research fields, it is still in its infancy in many aspects while comparable topics have been studied in other disciplines for decades. In particular, extensive research in sedimentology can provide valuable insights to guide future microplastics research. To advance our understanding of the comparability of natural sediments with microplastics, we take an interdisciplinary look at the existing literature describing particle properties, transport processes, sampling techniques and ecotoxicology. Based on our analysis, we define seven research goals that are essential to improve our understanding of microplastics and can be tackled by learning from natural sediment research, and identify relevant tasks to achieve each goal. These goals address (1) the description of microplastic particles, (2) the interaction of microplastics with environmental substances, (3) the vertical distribution of microplastics, (4) the erosion and deposition behaviour of microplastics, (5) the impact of biota on microplastic transport, (6) the sampling methods and (7) the microplastic toxicity. When describing microplastic particles, we should specifically draw from the knowledge of natural sediments, for example by using shape factors or applying methods for determining the principal dimensions of non-spherical particles. Sediment transport offers many fundamentals that are transferable to microplastic transport, and could be usefully applied. However, major knowledge gaps still exist in understanding the role of transport modes, the influence of biota on microplastic transport, and the importance and implementation of the dynamic behaviour of microplastics as a result of time-dependent changes in particle properties in numerical models. We give an overview of available sampling methods from sedimentology and discuss their suitability for microplastic sampling, which can be used for creating standardised guidelines for future application with microplastics. In order to comprehensively assess the ecotoxicology of microplastics, a distinction must be made between the effects of the polymers themselves, their physical form, the plastic-associated chemicals and the attached pollutants. This review highlights areas where we can rely on understanding and techniques from sediment research - and areas where we need new, microplastic-specific knowledge - and synthesize recommendations to guide future, interdisciplinary microplastic research
    corecore