4,689 research outputs found

    The progenitor of the 'born-again' core V605 Aql and the relation to its younger twin V4334 Sgr

    Full text link
    We derived the properties of V605 Aql before the final helium flash pulse by studying its surrounding PN A58. Photoionizing models of our spectral data together with a new distance estimate and a closer look at the recombination timescales lead to a consistent model. Comparing our findings with the only hydrogen-poor twin, namely Sakurai's Object, we conclude that these born-again objects have normal PNe core masses. We are able to prove V605 Aql indeed to be, similar to V4332 Sgr, a very late thermal pulse object and to put constraints for the evolutionary time scales for the transition back to the AGB.Comment: LaTeX, 5 pages, 3 figures, Accepted in Astron. & Astrophy

    Development of Silicon Strip Detectors for a Medium Energy Gamma-ray Telescope

    Full text link
    We report on the design, production, and testing of advanced double-sided silicon strip detectors under development at the Max-Planck-Institute as part of the Medium Energy Gamma-ray Astronomy (MEGA) project. The detectors are designed to form a stack, the "tracker," with the goal of recording the paths of energetic electrons produced by Compton-scatter and pair-production interactions. Each layer of the tracker is composed of a 3 x 3 array of 500 micron thick silicon wafers, each 6 cm x 6 cm and fitted with 128 orthogonal p and n strips on opposite sides (470 micron pitch). The strips are biased using the punch-through principle and AC-coupled via metal strips separated from the strip implant by an insulating oxide/nitride layer. The strips from adjacent wafers in the 3 x 3 array are wire-bonded in series and read out by 128-channel TA1.1 ASICs, creating a total 19 cm x 19 cm position-sensitive area. At 20 degrees C a typical energy resolution of 15-20 keV FWHM, a position resolution of 290 microns, and a time resolution of ~1 microsec is observed.Comment: 9 pages, 13 figures, to appear in NIM-A (Proceedings of the 9th European Symposium on Semiconductor Detectors

    String-- and Brane--Localized Causal Fields in a Strongly Nonlocal Model

    Full text link
    We study a weakly local, but nonlocal model in spacetime dimension d≥2d \geq 2 and prove that it is maximally nonlocal in a certain specific quantitative sense. Nevertheless, depending on the number of dimensions dd, it has string--localized or brane--localized operators which commute at spatial distances. In two spacetime dimensions, the model even comprises a covariant and local subnet of operators localized in bounded subsets of Minkowski space which has a nontrivial scattering matrix. The model thus exemplifies the algebraic construction of local observables from algebras associated with nonlocal fields.Comment: paper re-written with a change of emphasis and new result

    Energy deposition studies for the High-Luminosity Large Hadron Collider inner triplet magnets

    Full text link
    A detailed model of the High Luminosity LHC inner triplet region with new large-aperture Nb3Sn magnets, field maps, corrector packages, and segmented tungsten inner absorbers was built and implemented into the FLUKA and MARS15 codes. In the optimized configuration, the peak power density averaged over the magnet inner cable width is safely below the quench limit. For the integrated luminosity of 3000 fb-1, the peak dose in the innermost magnet insulator ranges from 20 to 35 MGy. Dynamic heat loads to the triplet magnet cold mass are calculated to evaluate the cryogenic capability. In general, FLUKA and MARS results are in a very good agreement.Comment: 24 p

    An excited state coupled-cluster study on indigo dyes

    Get PDF
    In the present study, the domain-based pair natural orbital implementation of the similarity-transformed equation of motion method is employed to reproduce the vibrationally resolved absorption spectra of indigo dyes. After an initial investigation of multireference, basis set and implicit solvent effects, our calculated 0–0 transition energies are compared to a benchmark set of experimental absorption band maxima. It is established that the agreement between our method and experimental results is well below the desired 0.1 eV threshold in virtually all cases and that the shift in excitation energies upon chemical substitution is also well reproduced. Finally, the entire spectra of some of the main components of the Tyrian purple dye mixture are reproduced and it is found that our computed spectra match the experimental ones without an empirical shift

    An operator expansion for integrable quantum field theories

    Full text link
    A large class of quantum field theories on 1+1 dimensional Minkowski space, namely, certain integrable models, has recently been constructed rigorously by Lechner. However, the construction is very abstract and the concrete form of local observables in these models remains largely unknown. Aiming for more insight into their structure, we establish a series expansion for observables, similar but not identical to the well-known form factor expansion. This expansion will be the basis for a characterization and explicit construction of local observables, to be discussed elsewhere. Here, we establish the expansion independent of the localization aspect, and analyze its behavior under space-time symmetries. We also clarify relations with deformation methods in quantum field theory, specifically, with the warped convolution in the sense of Buchholz and Summers.Comment: minor corrections and clarifications, as published in J. Phys A; 24 page
    • …
    corecore